Deficit of Neurotrophins in Experimental Diabetes – Correction with a Proline-Containing Dipeptide

  • R. U. OstrovskayaEmail author
  • T. A. Antipova
  • S. V. Nikolaev
  • S. V. Kruglov
  • I. V. Ozerova
  • T. A. Gudasheva
  • S. B. Seredenin

Experiments on Wistar rats using a model of type 2 diabetes induced by streptozotocin (STZ) at a dose of 40 mg/kg addressed the effects of the proline-containing dipeptide noopept (the ethyl ester of N-phenylacetyl-L-prolylglycine) on nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) contents. Untreated diabetic rats showed 59% and 33% decreases in NGF content in the pancreas and liver, respectively, while BDNF contents decreased by 30% and 40% in the pancreas and liver, respectively, as compared with controls. Noopept given to diabetic rats at a dose of 0.5 mg/kg for 14 days increased the NGF content in the pancreas by 48% compared with untreated diabetic rats and produced a 19% increase in the NGF content in the liver as compared with the control group. Noopept given to diabetic rats normalized BDNF content in the pancreas but had no effect on the decreased level in the liver. The data obtained here identify one of the mechanisms of the antidiabetic action of noopept described in our previous reports.


NGF BDNF diabetes cytoprotection dipeptides Noopept 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. A. Antipova, R. U. Ostrovskaya, T. A. Gudasheva, and S. B. Seredenin, “Dipeptide analogs of piracetam increase the viability of NT-22 hippocampal neurons in a model of glutamate toxicity,” Byull. Eksperim. Biol. Med., 161, No. 1, 68–71 (2016).Google Scholar
  2. 2.
    Yu. V. Vakhitova, S. V. Sadovnikov, S. S. Borisevich, et al., “The molecular mechanism of action of noopept – a substituted Pro-Glyc dipeptide,” Acta Naturae, 8, No. 1, 82–89 (2016).CrossRefGoogle Scholar
  3. 3.
    A. M. Mendzheritskii, A. V. Lysenko, S. V. Dem’yanenko, et al., “Lipid peroxidation processes in the cerebral cortex of the brain and plasma of young rats with high levels of anxiety in emotional stress: the protective effect of the nootropic dipeptide GVS-111,” Neirokhimiya, 20, No. 4, 281–286 (2003).Google Scholar
  4. 4.
    R. U. Ostrovskaya, T. A. Gudasheva, A. P. Tsaplina, et al., “Noopept stimulates ngf and bdnf expression in the rat hippocampus,” Byull. Eksperim. Biol. Med., 146, No. 9, 310–313 (2008).Google Scholar
  5. 5.
    R. U. Ostrovskaya, A. P. Tsaplina, Yu. V. Vakhitova, et al., “Efficacy of the nootropic and neuroprotective dipeptide noopept on the streptozotocin model of Alzheimer’s disease in rats,” Eksperim. Klin. Farmakol., 73, No. 1, 2–6 (2010).Google Scholar
  6. 6.
    R. U. Ostrovskaya, Yu. V. Vakhitova, M. Kh. Salimgareeva, et al., “Mechanisms of action of noopept: decreased activity of stress-induced protein kinases and activation of neurotrophin expression,” Eksperim. Klin. Farmakol., 73, No. 12, 2–5 (2010).Google Scholar
  7. 7.
    R. U. Ostrovskaya, N. N. Zolotov, I. V. Ozerova, et al., “Noopept restores measures of the incretin system in modeling diabetes in rats,” Byull. Eksperim. Biol. Med., 157, No. 3, 321–327 (2014).Google Scholar
  8. 8.
    R. U. Ostrovskaya and S. S. Yagubova, “The commonality of the mechanisms of Alzheimer’s disease and diabetes: routes to pharmacological correction,” Psikhiatriya, 1, 34–43 (2014).Google Scholar
  9. 9.
    R. U. Ostrovskaya, T. A. Antipova, N. N. Zolotov, et al., “Oxidative and nitrosative stress in a translational model of diabetes; the normalizing effect of the Pro-Gly-containing dipeptide noopept,” Molek. Med., 15, No. 4, 23–28 (2017).Google Scholar
  10. 10.
    I. Afanas’ev, “Signaling of reactive oxygen and nitrogen species in diabetes mellitus,” Oxid. Med. Cell. Longev., 3, No. 6, 361–373 (2010).CrossRefGoogle Scholar
  11. 11.
    T. K. Ali, M. M. H. Al-Gayyar, S. Matragoon, et al., “Diabetes-induced peroxynitrite impairs the balance of pro-nerve growth factor and nerve growth factor, and causes neurovascular injury,” Diabetologia, 54, 657–668 (2011).CrossRefGoogle Scholar
  12. 12.
    F. Atouf, P. Czernichow, and R. Scharfmann, “Expression of neuronal traits in pancreatic beta cells,” J. Biol. Chem., 272, No. 3, 1929–1934 (1997).CrossRefGoogle Scholar
  13. 13.
    S. Baekkeskov, H. Aanstoot, S. Christgau, et al., “Identification of the 64K autoantigen in insulin-dependent diabetes as the GABAsynthesizing enzyme glutamic acid decarboxylase,” Nature, 347, 151–157 (1990).CrossRefGoogle Scholar
  14. 14.
    S. Bathina and U. N. Das, “Brain-derived neurotrophic factor and its clinical implications,” Arch. Med. Sci., 11, No. 6, 1164–1178 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Bathina, N. Srinivas, and U. N. Das, “BDNF protects pancreatic β cells (RIN5F) against cytotoxic action of alloxan, streptozotocin, doxorubicin and benzo(a)pyrene in vitro,” Metabolism, 65, No. 5, 667–684 (2016).CrossRefGoogle Scholar
  16. 16.
    E. M. Candeias, I. C. Sebastiao, S. M. Cardoso, et al., “Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide,” World J. Diabetes, 25, No. 6, 807–827 (2015).CrossRefGoogle Scholar
  17. 17.
    D. I. Cassiman, C. Denef, V. J. Desmet, and T. Roskams, “Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors,” Hepatology, 33, No. 1, 148–158 (2001).CrossRefGoogle Scholar
  18. 18.
    S. B. Catrina, K. Okamoto, T. Pereira, et al., “Hyperglycemia regulates hypoxia-inducible factor-1 protein stability and function,” Diabetes, 53, 3226–3232 (2004).CrossRefGoogle Scholar
  19. 19.
    G. N. Chaldakov, “The metabotrophic NGF and BDNF: an emerging concept,” Arch. Ital. Biol., 149, 257–263 (2011).Google Scholar
  20. 20.
    L. Chen and M. Grably, “Pro-neurotrophins – the other identity of neurotrophins,” Neurotrophin Pathways, No. 2, 4–6 (2013).Google Scholar
  21. 21.
    K. Cheng, K. Ho, R. Stokes, et al., “Hypoxia-inducible factor-1 regulates beta-cell function in mouse and human islets,” J. Clin. Invest., 120, No. 6, 2171–2183 (2010).CrossRefGoogle Scholar
  22. 22.
    S. C. Correia and P. I. Moreira, “Hypoxia-inducible factor 1: a new hope to counteract neurodegeneration?” J. Neurochem., 112, No. 1, 1–12 (2010).CrossRefGoogle Scholar
  23. 23.
    D. Eberhard, “Neuron and beta-cell evolution: learning about neurons is learning about beta-cells,” Bioessays, 35, 584 (2013).CrossRefGoogle Scholar
  24. 24.
    G. Grouwels, S. Vasylovska, J. Olerud, et al., “Differentiating neural crest stem cells induce proliferation of cultured rodent islet beta cells,” Diabetologia, 55, No. 7, 2016–2025 (2012).CrossRefGoogle Scholar
  25. 25.
    T. A. Gudasheva, T. A. Voronina, R. U. Ostrovskaya, et al., “Synthesis and antiamnesic activity of a series of N-acylprolyl-containing dipeptides,” Eur. J. Med. Chem., 31, 151–157 (1996).CrossRefGoogle Scholar
  26. 26.
    O. Hanyu, K. Yamatani, T. Ikarashi, et al., “Brain-derived neurotrophic factor modulates glucagon secretion from pancreatic alpha cells: its contribution to glucose metabolism,” Diabetes Obes. Metab., 5, 27–37 (2003).CrossRefGoogle Scholar
  27. 27.
    K. S. Krabbe, A. R. Nielsen, R. Krogh-Madsen, et al., “Brain-derived neurotrophic factor (BDNF) and type 2 diabetes,” Diabetologia, 50, No. 2, 431–438 (2007).CrossRefGoogle Scholar
  28. 28.
    T. Nakagawa, Y. Ogawa, K. Ebihara, et al., “Anti-obesity and anti-diabetic effects of brain-derived neurotrophic factor in rodent models of leptin resistance,” Int. J. Obes. Relat. Disord., 27, 557–565 (2003).CrossRefGoogle Scholar
  29. 29.
    E. E. Noble, C. J. Billington, C. M. Kotz, and C. Wang, “The lighter side of BDNF,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 300, No. 5, 1053–1069 (2011).CrossRefGoogle Scholar
  30. 30.
    Y. Ohta, Y. Kosaka, I. Kishimoto, et al., “Convergence of the insulin and serotonin programs in the pancreatic β-Cell,” Diabetes, 60, No. 12, 3208–3216 (2011); Scholar
  31. 31.
    R. Ostrovskaya, Yu. Vakhitova, U. Kuzmina, et al., “Neuroprotective effect of novel cognitive enhancer noopept on AD-related cellular model involves the attenuation of apoptosis and tau hyperphosphorylation,” J. Biomed. Sci., 21, 74, 2014 doi: CrossRefGoogle Scholar
  32. 32.
    R. U. Ostrovskaya, G. A. Romanova, I. V. Barskov, et al., “Memory restoring and neuroprotective effects of the proline containing dipeptide, GVS-111, in a photochemical stroke model,” Behav. Pharmacol., 10, 549–553 (1999).CrossRefGoogle Scholar
  33. 33.
    S. Otter and E. Lammert, “Exciting times for pancreatic islets: glutamate signaling in endocrine cells,” Trends Endocrinol. Metab., 27, No. 3, 177–188 (2016).CrossRefGoogle Scholar
  34. 34.
    M. Paris, C. Tourrel-Cuzin, C. Plachot, and A. Ktorza, “Review: pancreatic beta-cell neogenesis revisited,” Exp. Diabesity Res., 5, No. 2, 111–121 (2004).CrossRefGoogle Scholar
  35. 35.
    A. Pealsman, C. Hoyo-Vadillo, S. B. Seredenin, et al., “GVS-111 prevents oxidative damage and apoptosis in normal and Down’s syndrome human cortical neurons,” Int. J. Dev. Neuroscience, 21, 117–124 (2003).CrossRefGoogle Scholar
  36. 36.
    M. Polak, R. Scharfmann, B. Seilheimer, et al., “Nerve growth factor induces neuron-like differentiation of an insulin secreting pancreatic beta cell line,” Proc. Natl. Acad. Sci. USA, 90, 5781–5785 (1993).CrossRefGoogle Scholar
  37. 37.
    E. Rockenstein, K. Ubhi, E. Pham, et al., “Beneficial effects of a neurotrophic peptidergic mixture persist for a prolonged period following treatment interruption in a transgenic model of Alzheimer’s disease,” J. Neurosci. Res., 89, No. 11, 1812–1821 (2011).CrossRefGoogle Scholar
  38. 38.
    H. Sakagami, Y. Makino, K. Mizumoto, et al., “Loss of HIF-1α impairs GLUT4 translocation and glucose uptake by the skeletal muscle cells,” Am. J. Physiol. Endocrinol. Metab., 306, No. 9, E1065–E1076 (2014).CrossRefGoogle Scholar
  39. 39.
    S. B. Seredenin, T. A. Voronina, T. A. Gudasheva, et al., “Biologically active N-acylprolyldipeptides having antiamnestic, antihypoxic effects,” Patent No. 5.439.930 USA (1995).Google Scholar
  40. 40.
    S. Sivakumar and S. P. Subramanian, “D-pinitol attenuates the impaired activities of hepatic key enzymes in carbohydrate metabolism of streptozotocin-induced diabetic rats,” Gen. Physiol. Biophys., 28, No. 3, 233–241 (2009).CrossRefGoogle Scholar
  41. 41.
    V. Sposato, L. Manni, G. N. Chaldakov, and L. Aloe, “Streptozotocininduced diabetes is associated with changes in NGF levels in pancreas and brain,” Arch. Ital. Biol., 145, 87–97 (2007).Google Scholar
  42. 42.
    T. Szkudelski, “The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas,” Physiol. Res., 50, No. 6, 536–546 (2001).Google Scholar
  43. 43.
    J. R. Tonra, M. Ono, X. Liu, et al., “Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-epr(db)/lepr(db) mice,” Diabetes, 48, No. 3, 588–594 (1999).CrossRefGoogle Scholar
  44. 44.
    H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proc. Natl. Acad. Sci. USA, 76, 4350–4353 (1979).CrossRefGoogle Scholar
  45. 45.
    A. Tsuchida, T. Nakagawa, Y. Itakura, et al., “The effects of brain-derived neurotrophic factor on insulin signal transduction in the liver of diabetic mice,” Diabetologia, 44, No. 5, 555–566 (2001).CrossRefGoogle Scholar
  46. 46.
    R. Vidaltamayo, C. M. Mery, A. Angeles-Angeles, et al., “Expression of nerve growth factor in human pancreatic beta cells,” Growth Factors, 21, No. 3–4, 103–107 (2003).CrossRefGoogle Scholar
  47. 47.
    J. R. Woodgett, “Physiological roles of glycogen synthase kinase-3: potential as a therapeutic target for diabetes and other disoRDUrs,” Curr. Drug Targets Immune Endocr. Metabol. Disord., 3, No. 4, 281–290 (2003).CrossRefGoogle Scholar
  48. 48.
    S. Yanev, L. Aloe, M. Fiore, and G. N. Chaldakov, “Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases,” World J. Pharmacol., 2, No. 4, 92–99 (2013).CrossRefGoogle Scholar
  49. 49.
    Y. F. Zhen, J. Zhang, X. Y. Liu, et al., “Low BDNF is associated with cognitive deficits in patients with type 2 diabetes,” Psychopharmacology (Berlin), 227, No. 1, 93–100 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. U. Ostrovskaya
    • 1
    Email author
  • T. A. Antipova
    • 1
  • S. V. Nikolaev
    • 1
  • S. V. Kruglov
    • 1
  • I. V. Ozerova
    • 1
  • T. A. Gudasheva
    • 1
  • S. B. Seredenin
    • 1
  1. 1.Zakusov Research Institute of PharmacologyMoscowRussia

Personalised recommendations