Advertisement

Effects of the Val158Met Polymorphism of the Catechol-O-Methyltransferase Gene on Measures of Sensory Gating in Health and Schizophrenia

  • Z. I. StorozhevaEmail author
  • A. V. Kirenskaya
  • V. K. Bochkarev
  • E. A. Ilushina
Article

The effects of the Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene on sensory gating were studied in 41 mentally healthy volunteers (healthy group) and 39 patients with schizophrenia. P50 auditory event-related potentials obtained in the paired-pulse stimulation paradigm with an interpulse interval of 500 msec were recorded. Comparison of the two groups demonstrated a decrease in P50 inhibition in patients as compared with the healthy group (p < 0.05). The COMT polymorphism was found to affect the parameters of the P50 wave only in the healthy group: carriers of the Val/Val genotype had maximum-amplitude responses to the first stimulus in the pair (A1) and the highest level of inhibition of P50. Comparison of measures of P50 inhibition between the healthy and schizophrenia groups with different variants of the Val158Met genotype revealed significant differences only in comparison with the cohort with the Val/Val genotype. P50 latency was significantly influenced by the genotype factor in the combined cohort of healthy volunteers and patients, due to an increase in latency in carriers of the Met/Met genotype. In the patients group, the profile of correlations between P50 parameters and the PANSS was found to depend on the COMT genotype.

Keywords

sensory gating P50 auditory potential Val158Met polymorphism of the catechol-O-methyltransferase gene schizophrenia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Kirenskaya, Z. I. Storozheva, V. V. Myamlin, and A. A. Tkachenko, “The concept of endophenotypes in neurophysiological studies of schizophrenia,” Zh. Vyssh. Nerv. Deyat., 63, No. 6, 625–642 (2013).Google Scholar
  2. 2.
    A. V. Kirenskaya, Z. I. Storozheva, V. V. Kolobov, and V. V. Sherstnev, “The acoustic startle reaction and polymorphism of the catechol-O-methyltransferase gene,” Neirokhimiya, 32, No. 1, 89–97 (2015).Google Scholar
  3. 3.
    T. M. Maryutina, “Endophenotypes: different variants and possible interpretations,” Sovrem. Zarubezh. Psikhol., 1, No. 3, 50–61 (2012), http://psyjournals.ru/jmfp/2012/n3/56558.shtml.Google Scholar
  4. 4.
    S. N. Mosolov, Psychometric Assessment Scales for Assessment of Schizophrenia and the Concept of Positive and Negative Disorders, Novyi Tsvet, Moscow (2001).Google Scholar
  5. 5.
    L. E. Adler, A. Olincy, M. C. Waldo, et al., “Schizophrenia sensory gating and nicotinic receptors,” Schizophr. Bull., 24, No. 2, 198–202 (1998).CrossRefGoogle Scholar
  6. 6.
    K. Alho, D. L. Woods, A. Algazi, et al., “Lesions of frontal cortex diminish the auditory mismatch negativity,” Electroencephalogr. Clin. Neurophysiol., 91, No. 5, 353–362 (1994).CrossRefGoogle Scholar
  7. 7.
    M. Ayalew, H. Le-Niculescu, D. F. Levey, et al., “Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction,” Mol. Psychiatry, 17, No. 9, 887–905 (2012).CrossRefGoogle Scholar
  8. 8.
    L. D. Blumenfeld and B. A. Clementz, “Response to the first stimulus determines reduced auditory evoked response suppression in schizophrenia: Single trials analysis using MEG,” Clin. Neurophysiol., 112, No. 9, 1650–1659 (2001).CrossRefGoogle Scholar
  9. 9.
    N. N. Boutros, A. Brockhaus-Dumke, K. Gjini, et al., “Sensory-gating deficit of the N100 mid-latency auditory evoked potential in medicated schizophrenia patients,” Schizophr. Res., 113, No. 2–3, 339–346 (2009).CrossRefGoogle Scholar
  10. 10.
    D. L. Braff and R. Freedman, “Endophenotypes in studies of the genetics of schizophrenia,” in: Neuropsychopharmacology: the Fifth Generation of Progress, Lippincott, Williams, Wilkins, Philadelphia, PA (2002), pp. 703–716.Google Scholar
  11. 11.
    D. L. Braff, T. A. Greenwood, N. R. Swerdlow, et al., “Advances in endophenotyping schizophrenia,” World Psychiatry, 7, No. 1, 11–18 (2008).CrossRefGoogle Scholar
  12. 12.
    C. A. Brenner, P. D. Kieffaber, B. A. Clementz, et al., “Event-related potential abnormalities in schizophrenia: a failure to ‘gate in’ salient information?” Schizophr. Res., 113, No. 2/3, 332–338 (2009).CrossRefGoogle Scholar
  13. 13.
    W.-P. Chang, C. L. Areken, M. P. Sangal, and N. N. Boutros, “Probing the relative contribution of the first and second responses to sensory gating indices: A meta-analysis,” Psychophysiology, 48, No. 7, 980–992 (2011).CrossRefGoogle Scholar
  14. 14.
    J. Chen, B. K. Lipska, N. Halim, et al., “Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain,” Am. J. Hum. Genet., 75, No. 5, 807–821 (2004).CrossRefGoogle Scholar
  15. 15.
    B. A. Clementz, M. A. Geyer, and D. L. Braff, “P50 suppression among schizophrenia and normal comparison subjects: A methodological analysis,” Biol. Psychiatry, 41, No. 10, 1035–1044 (1997).CrossRefGoogle Scholar
  16. 16.
    A. L. Collins, Y. Kim, P. Sklar, International Schizophrenia Consortium, M. C. O’Donovan, and P. F. Sullivan, “Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results,” Psychol. Med., 42, No. 3, 607–616 (2012).Google Scholar
  17. 17.
    S. De la Salle, D. Smith, J. Choueiry, et al., “Effects of COMT genotype on sensory gating and its modulation by nicotine: Differences in low and high P50 suppressors,” Neuroscience, 241, 147–156 (2013).Google Scholar
  18. 18.
    C. Demily, S. Louchart-de-la-Chapelle, I. Nkam, et al., “Does COMT Val158Met polymorphism influence P50 sensory gating, eye tracking or saccadic inhibition dysfunctions in schizophrenia?” Psychiatry Res. (2016), pii: S0165-1781(16)30107-X.2016, DOI: 10.1016/j. psychres.2016.07.066.Google Scholar
  19. 19.
    R. Freedman, L. E. Adler, M. Myles-Worsley, et al., “Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects: human recordings, computer simulation, and an animal model,” Arch. Gen. Psychiatry, 53, No. 12, 1114–1121 (1996).CrossRefGoogle Scholar
  20. 20.
    I. Gottesman and T. Gould, “The endophenotype concept in psychiatry: Etymology and strategic intentions,” Am. J. Psychiatry, 160, No. 4, 636–645 (2003).CrossRefGoogle Scholar
  21. 21.
    T. A. Greenwood, G. A. Light, N. R. Swerdlow, et al., “Gating deficit heritability and correlation with increased clinical severity in schizophrenia patients with positive family history,” Am. J. Psychiatry, 173, No. 4, 385–391 (2016).CrossRefGoogle Scholar
  22. 22.
    T. Grunwald, N. N. Butros, N. Pezer, J. et al., “Neuronal substrates of sensory gating within the human brain,” Biol. Psychiatry, 53, No. 6, 511–519 (2003).Google Scholar
  23. 23.
    L. Hu, N. N. Boutros, and B. H. Jansen, “Sensory gating-out and gating-in in normal and schizophrenic participants,” Clin. EEG Neurosci, 43, No. 1, 23–31 (2012).CrossRefGoogle Scholar
  24. 24.
    Y. Jin, W. J. Bunney, C. A. Sandman, et al., “Is P50 suppression a measure of sensory gating in schizophrenia?” Biol. Psychiatry, 43, No. 12, 873–878 (1998).CrossRefGoogle Scholar
  25. 25.
    O. Korzyukov, M. E. Pflieger, M. Wagner, et al., “Generators of the intracranial P50 response in auditory sensory gating,” Neuroimage, 35, No. 2, 814–826 (2007).CrossRefGoogle Scholar
  26. 26.
    G. A. Light, D. Malaspina, M. A. Geyer, et al., “Amphetamine disrupts P50 suppression in normal subjects,” Biol. Psychiatry, 46, No. 7, 990–996 (1999).CrossRefGoogle Scholar
  27. 27.
    B. Y. Lu, K. E. Martin, J. C. Edgar, et al., “Effect of catechol O-methyltransferase val(158)met polymorphism on the p50 gating endophenotype in schizophrenia,” Biol. Psychiatry, 62, No. 7, 822–825 (2007).CrossRefGoogle Scholar
  28. 28.
    T. Majic, J. Rentzsch, Y. Gudlowski, et al., “COMT Val108/158Met genotype modulates human sensory gating,” Neuroimage, 55, No. 2, 818–824 (2011).CrossRefGoogle Scholar
  29. 29.
    Q. Mao, Y. L. Tan, X. G. Luo, et al., “Association of catechol-O-methyltransferase Val(108/158) Met genetic polymorphism with schizophrenia, P50 sensory gating, and negative symptoms in a Chinese population,” Psychiatry Res., 242, 271–276 (2016).CrossRefGoogle Scholar
  30. 30.
    M. T. Nagamoto, L. E. Adler, M. C. Waldo, et al., “Gating of auditory response in schizophrenics and normal controls. Effects of recording site and stimulation interval on the P50 wave,” Schizophr. Bull., 4, No. 1, 31–40 (1991).CrossRefGoogle Scholar
  31. 31.
    B. Oranje, C. C. Gispen-de Wied, H. G. Westenberg, et al., “Increasing dopaminergic activity: effects of L-dopa and bromocriptine on human sensory gating,” J. Psychopharmacology, 18, No. 3, 388–394 (2004).CrossRefGoogle Scholar
  32. 32.
    D. Potter, A. Summerfelt, J. Gold, and R. W. Buchanan, “Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia,” Schizophr. Bull., 32, No. 4, 692–700 (2006).CrossRefGoogle Scholar
  33. 33.
    T. P. Roberts, S. Y. Khan, L. Blaskey, et al., “Developmental correlation of diffusion anisotropy with auditory-evoked response,” Neuroreport, 20, No. 18, 1586–1591 (2009).CrossRefGoogle Scholar
  34. 34.
    J. K. Seamans, N. Gorelova, D. Durstewitz, and C. R. Yang, “Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons,” J. Neurosci., 21, No. 10, 3628–3638 (2001).CrossRefGoogle Scholar
  35. 35.
    M. Shaikh, M. H. Hall, K. Schulze, et al., “Do COMT, BDNF and NRG1 polymorphisms influence P50 sensory gating in psychosis?” Psychol. Med., 41, No. 2, 263–276 (2011).CrossRefGoogle Scholar
  36. 36.
    A. A. Shukla, M. Jha, T. Birchfield, et al., “COMT Val158Met polymorphism and molecular alterations in the human dorsolateral prefrontal cortex: Differences in controls and in schizophrenia,” Schizophr. Res., 173, No. 1/2, 94–100 (2016).Google Scholar
  37. 37.
    C. Thomas, I. vom Berg, A. Rupp, et al., “P50 gating deficit in Alzheimer dementia correlates to frontal neuropsychological function,” Neurobiol. Aging, 31, No. 3, 416–424 (2010).CrossRefGoogle Scholar
  38. 38.
    A. Toyomaki, N. Hashimoto, Y. Kako, et al., “Different P50 sensory gating measures reflect different cognitive dysfunctions in schizophrenia,” Schizophr. Res. Cogn., 2, 166–169 (2015).CrossRefGoogle Scholar
  39. 39.
    S. Walther, R. Goya-Maldonado, C. Stippich, et al., “A supramodal network for response inhibition,” Neuroreport, 21, No. 3, 191–195 (2010).CrossRefGoogle Scholar
  40. 40.
    T. J. Williams, K. H. Nuechterlein, K. L. Subotnik, and C. M. Yee, “Distinct neural generators of sensory gating in schizophrenia,” Psychophysiology, 48, No. 4, 470–478 (2011).CrossRefGoogle Scholar
  41. 41.
    R. Weisser, M. Weisbrod, M. Roehrig, et al., “Is frontal lobe involved in the generation of auditory evoked P50?” Neuroreport, 12, No. 15, 3303–3307 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Z. I. Storozheva
    • 1
    Email author
  • A. V. Kirenskaya
    • 1
  • V. K. Bochkarev
    • 1
  • E. A. Ilushina
    • 1
  1. 1.Serbskii Federal Medical Research Center for Psychiatry and NarcologyMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations