Advertisement

Use of Hydrobionts as Alternative Biological Models

  • G. I. ProninaEmail author
  • N. Yu. Koryagina
  • A. O. Revyakin
  • O. I. Stepanova
  • Zh. O. Kurishenko
  • N. V. Petrova
Article

We present here results from model experiments with poikilotherm hydrobionts belonging to different taxonomic groups: crayfish (Pontatacus leptodactylus), fish, i.e., carp (Cyprinus carpio), and amphibians, i.e., axolotl (Ambystoma mexicanum). Fatty dystrophy of the hepatopancreas in crayfish and pathology of the pancreas in carp were modeled by administration of alloxan at doses of 50 and 200 mg/kg, respectively. Crayfish received alloxan into the ventral sinus and fish were treated i.p. Liver pathology in fish was modeled by administration of seven doses of paracetamol 15 g/kg over 14 days. Parenteral administration (into the central sinus of crayfish, i.v. in fish, and i.p. in axolotls) of stem and progenitor cells from mammalian donors (mice) at a dose of 10·106 bone marrow cells (BMC) was found to have effects. Fish and crayfish with pathology displayed intensive tissue regeneration and restoration of damaged parenchymatous organs. Administration of stem cells accelerated the process of regeneration of amputated limbs in axolotls. These results extend the potential of medical-biological studies of in vivo models.

Keywords

alternative biological models hydrobionts fish crayfish axolotls hepatopancreas stem cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. K. Blandova, V. A. Dushkin, A. M. Malashenko, and E. F. Shmitd, Laboratory Animal Strains for Medical-Biological Research, Nauka, Moscow (1983), Iss. 42, p. 105.Google Scholar
  2. 2.
    V. V. Verkhusha, N. A. Akovbyan, E. N. Efremenko, et al., “Kinetic analysis of maturation and denaturation of the red fluorescent protein DsRed,” Biokhimiya, 66, 1659–1670 (2001).Google Scholar
  3. 3.
    A. P. Dyban and P. A. Dyban, “Stem cells in experimental and clinical medicine,” Med. Akad. Zh., 2, No. 3, 3–25 (2002).Google Scholar
  4. 4.
    N. N. Karkishchenko, “Classical and alternative models in drug toxicology,” Biomeditsina, No. 4, 5–23 (2006).Google Scholar
  5. 5.
    N. N. Karkishchenko, Basic Biological Modeling, VPK Press, Moscow (2005).Google Scholar
  6. 6.
    N. V. Kasinskaya, O. I. Stepanova, N. N. Karkishchenko, et al., “The green protein gene as a marker for transplantation of bone marrow stem and progenitor cells,” Biomeditsina, 2, 30–34 (2011).Google Scholar
  7. 7.
    A. S. Luk’yanov, L. L. Lukyanova, N. M. Chernavskaya, and S. F. Gilyazov, Bioethics. Alternatives to Experiments on Animals, Moscow State University Press, Moscow (1996).Google Scholar
  8. 8.
    N. N. Mushkambarov and S. L. Kuznetsov, Molecular Biology, MIA, Moscow (2003).Google Scholar
  9. 9.
    G. I. Pronina, “Use of cytochemical methods for determination of phagocyte activity of blood or hemolymph cells from different species of hydrobionts for assessment of their state of health,” Izv. Orenburg. Gos. Agrar. Univ., 20, No. 4, 160–163 (2008).Google Scholar
  10. 10.
    G. I. Pronina, N. Yu. Koryagina, A. O. Revyakin, et al., “Hydrobionts as alternative biological models,” Biomeditsina, 3, 102–103 (2014).Google Scholar
  11. 11.
    T. V. Ryazanova, “Pathological changes in the organs and tissues of the snow crab (Chionoecetes opilio) on the western Kamchatka shelf of the Sea of Okhotsk,” Issled. Vodn. Biol. Resurs. Kamchat. S.-Z. Chasti Tikh. Okeana, 8, 207–216 (2006).Google Scholar
  12. 12.
    V. G. Savchenko, “Bone marrow transplantation in acute leukemias: arguments for and against,” Ter. Arkhiv., 7, 7–18 (1993).Google Scholar
  13. 13.
    N. A. Salmova and N. G. Zhuravleva, “Morphological structure of the liver and pancreas in young cod Gadus morthua L.) in artificial rearing conditions,” Vestn. Mosc. Gos. Tekhn. Univ., 15, No. 3, 551–558 (2012).Google Scholar
  14. 14.
    O. I. Stepanova, N. A. Onishchenko, O. V. Baranova, and T. V. Galakhova, “Use of cells in different fractions of allogeneic bone marrow for the treatment of type 2 diabetes mellitus in a genetic model,” Biomeditsina, 78–81 (2008).Google Scholar
  15. 15.
    M. G. Shubich, “Detection of cationic protein in the leukocyte cytoplasm using bromophenol blue,” Tsitologiya, 10, 1321–1322 (1974).Google Scholar
  16. 16.
    J. R. Beaman, R. Finch, H. Gardner, et al., “Mammalian immunoassays for predicting the toxicity of malathion in a laboratory fish model,” J. Toxicol. Environ. Health, 56, 523–542 (1999).Google Scholar
  17. 17.
    C. L. Bolis, M. Piccolella, A. Z. Dalla Valle, and J. C. Rankin, “Fish as model in pharmacological and biological research,” Pharmacol. Res., 44, 265–280 (2001).Google Scholar
  18. 18.
    R. J. Borski and R. G. Hodson, “Fish research and the Institutional Animal Care and Use Committee,” Institute for Laboratory Animal Res. J., 44, 286–294 (2003).Google Scholar
  19. 19.
    B. B. Brodie and J. Axelrod, “The fate of acetophenetidin (phenacetin) in man and methods for the estimation of acetophenitidin and its metabolites in biological material,” J. Pharmacol. Exp. Ther., 94, No. 1, 58–67 (1949).Google Scholar
  20. 20.
    A. A. Cameron, M. R. Plenderleith, and P. J. Snow, “Organization of the spinal cord in four species of elasmobranch fish: Cytoarchitecture and distribution of serotonin and selected neuropeptides,” J. Comp. Neurol., 297, 210–218 (1990).Google Scholar
  21. 21.
    N. V. Chandrasekharan, Dai Hu, K. L. Roos, et al., “COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression,” Proc. Natl. Acad. Sci. USA, 99, No. 21, 13926–13931 (2002).Google Scholar
  22. 22.
    K. A. Cho, S. Y. Ju, S. J. Cho, et al., “Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared with other subpopulations of the bone marrow,” Cell Biol. Int., 33, 772–777 (2009).Google Scholar
  23. 23.
    D. K. Cooper, B. Ekser, and A. J. Tector, “Immunobiological barriers to xenotransplantation,” Int. J. Surgery, 23, 211–216 (2015).Google Scholar
  24. 24.
    M. Cox, “Progress on regulations for human-derived therapeutic products,” Med. Device Technol., 14, 32–34 (2003).Google Scholar
  25. 25.
    L. J. Dai, H. Y. Li, L. X. Guan, et al., “The therapeutic potential of bone marrow-derived mesenchymal stem cells on hepatic cirrhosis,” Stem Cell Res., 2, No. 1, 16–25 (2009).Google Scholar
  26. 26.
    R. J. Deans and A. B. Moseley, “Mesenchymal stem cells: biology and potential clinical use,” Exp. Hematology, 28, No. 8, 875–884 (2000).Google Scholar
  27. 27.
    M. Elsner, M. Tiedge, and B. Guldbakke, “Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan,” Diabetologia, 45, No. 11, 1542–1549 (2002).Google Scholar
  28. 28.
    The Physiology of Fishes, D. H. Evans and J. B. Claiborne (eds.) (2005), 3rd ed., pp. 616–617.Google Scholar
  29. 29.
    J. M. Fox, G. Chamberlain, B. A. Ashton, and J. Middleton, “Recent advances into the understanding of mesenchymal stem cell trafficking,” Br. J. Haematol., 137, 491–502 (2007).Google Scholar
  30. 30.
    J. A. Gallagher, “Human osteoblast culture,” Methods Molec. Med., 80, 3–18 (2003).Google Scholar
  31. 31.
    F. W. Harrison and A. G. Humes (eds.), Microscopic Anatomy of Invertebrates. Decapoda. Crustacea, Wiley-Liss Inc., New York (1992).Google Scholar
  32. 32.
    J. A. Herd and A. C. Barger, “Simplified technique for chronic catherization of blood vessels,” J. Appl. Physiol., 19, 791–792 (1996).Google Scholar
  33. 33.
    D. Hess, L. Li, M. Martin, S. Sakano, et al., “Bone marrow-derived stem cells initiate pancreatic regeneration,” Nat. Biotechnol., 21, No. 7, 763–770 (2003).Google Scholar
  34. 34.
    Y. Hori, I. C. Rulifson, B. S. Tsai, et al., “Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells,” Proc. Natl. Acad. Sci. USA, 99, No. 25, 16105–16110 (2002).Google Scholar
  35. 35.
    B. Isomaa, H. Lilius, and C. Rabergh, “Aquatic toxicology in vitro: a brief review,” ATLA, 22, 243–254 (1994).Google Scholar
  36. 36.
    R. Johansen, J. R. Needham, D. J. Colquhoun, et al., “Guidelines for health and welfare monitoring of fish used in research,” Lab. Anim., 40, 323–340 (2006).Google Scholar
  37. 37.
    P. T. Johnson, Histology of the Blue Crab, Callinectes Sapidus: A Model for the Decapoda, Praeger, New York (1980).Google Scholar
  38. 38.
    L. S. Kaplow, “A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of Blood and marrow,” Blood, 10, 1023–1029 (1955).Google Scholar
  39. 39.
    K. A. Kelly, C. M. Havrilla, T. C. Brady, et al., “Oxidative stress in toxicology: Established mammalian and emerging piscine model systems,” Environ. Health Perspect., 106, 375–384 (1998).Google Scholar
  40. 40.
    K. D. Kroncke, K. Fehsel, A. Sommer, et al., “Nitric oxide generation during cellular metabolization of the diabetogenic N-methy-l-N-nitroso-urea streptozotozin contributes to islet cell DNA damage,” Biol. Chem. Hoppe Seyler, 376, No. 3, 179–185 (1995).Google Scholar
  41. 41.
    J. M. Law, “Mechanistic considerations in small fish carcinogenicity testing,” ILAR J., 42, 274–284 (2001).Google Scholar
  42. 42.
    R. B. Leonard, “Primary afferent receptive field properties and neurotransmitter candidates in vertebrate lacking unmyelinated fibres,” Prog. Clin. Biol. Res., 176, 135–145 (1985).Google Scholar
  43. 43.
    D. Lu, A. Mahmood, and M. Chopp, “Biologic transplantation and neurotrophin-induced neuroplasticity after traumatic brain injury,” J. Head Trauma Rehabil., 18, No. 4, 357–376 (2003).Google Scholar
  44. 44.
    P. Martin and P. Bateson (eds.), Measuring Behaviour (Appendix), Cambridge University Press, New York (1986).Google Scholar
  45. 45.
    G. K. Michalopoulos, “Liver regeneration after partial hepatectomy. Critical analysis of mechanistic dilemmas,” Am. J. Pathol., 176, No. 1, 2–13 (2010).Google Scholar
  46. 46.
    S. H. Mirmalek-Sani, D. C. Sullivan, C. Zimmerman, et al., “Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue,” Am. J. Pathol., 183, No. 2, 558–565 (2013).Google Scholar
  47. 47.
    D. B. Morton and P. M. Griffiths, “Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment,” Vet. Rec., H116, 431–436 (1985).Google Scholar
  48. 48.
    A. Nicholson, J. Sandler, and T. Seidle, “An evaluation of the US High Production Volume (HPV) chemical-testing programme: a study in (ir) relevance, redundancy and retro thinking,” ATLA, 32, Suppl. 1, 335–341 (2004).Google Scholar
  49. 49.
    P. Niehans, Kriminalität als Zell-Therapeutisches Problem, Stämpfli, Bern (1964).Google Scholar
  50. 50.
    G. Ostrander, “The laboratory fish,” in: Handbook of Experimental Animals, Academic Press Inc., Waltham, MA (2000).Google Scholar
  51. 51.
    D. Poll, B. Parekkadan, and C. H. Cho, “Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo,” Hepatology, 47, 1634–1643 (2008).Google Scholar
  52. 52.
    L. P. Posner, “Pain and distress in fish: A review of the evidence,” Inst. Lab. Animal Res. J., 50, 327–328 (2009).Google Scholar
  53. 53.
    D. A. Powers, “Fish as model systems,” Science, 246, 352–358 (1989).Google Scholar
  54. 54.
    R. Reimschuessel, “A fish model of renal regeneration and development,” ILAR J., 42, 285–291 (2001).Google Scholar
  55. 55.
    A. N. Rowan, Of Mice, Models and Men – a Critical Evaluation of Animal Research, State Univ. of New York Press, Albany (1984), pp. 323–324.Google Scholar
  56. 56.
    W. M. Russell and R. L. Birch, The Principles of Humane Experimental Technique, WorldCat Methuen, London (1959), pp. 238–239.Google Scholar
  57. 57.
    K. H. Ryu, “Liver stem cells derived from the bone marrow and umbilical cord blood,” Int. J. Stem Cells, 2, No. 2, 97–101 (2009).Google Scholar
  58. 58.
    C. Schullte and R. Nagel, “Testing acute toxicity in embryo of zebrafish, Brachydanio rerio, as an alternative to the acute fish test: preliminary results,” ATLA, 22, 12–19 (1994).Google Scholar
  59. 59.
    O. Shimomura, F. H. Johnson, and Y. Saiga, “Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea,” J. Cell. Comp. Physiol. 59, 223–239 (1962).Google Scholar
  60. 60.
    D. H. Smyth, Alternatives to Animal Experiments, Scholar Press & Research Defence Society, London (1978), pp. 218–219.Google Scholar
  61. 61.
    P. J. Snow, M. B. Plenderplaith, and L. L. Wright, “Quantitative study of primary sensory neurone populations of three species of elasmobranch fish,” J. Comp. Neurol., 334–335 (1993).Google Scholar
  62. 62.
    V. Sottile, “Bone marrow as a source of stem cells and germ cells? Perspectives for transplantation,” Cell Tissue Res., 328, No. 1, 1–5 (2007).Google Scholar
  63. 63.
    T. Szkudelski, “The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas,” Physiol. Res., 50, No. 6, 536–546 (2001).Google Scholar
  64. 64.
    S. L. Tomchuck, K. J. Zwezdaryk, S. B. Coffelt, et al., “Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses,” Stem Cells, 26, No. 1, 99–107 (2007).Google Scholar
  65. 65.
    S. Williams, W. C. Anderson, M. T. Santaguida, and S. J. Dylla, “Patient-derived xenografts, the cancer stem cell,” Lab. Invest., 93, 970–982 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. I. Pronina
    • 1
    Email author
  • N. Yu. Koryagina
    • 1
  • A. O. Revyakin
    • 2
  • O. I. Stepanova
    • 2
  • Zh. O. Kurishenko
    • 2
  • N. V. Petrova
    • 2
  1. 1.All-Russian Research Institute of Irrigation Fish FarmingVorovskii SettlementMoscow RegionRussia
  2. 2.Scientific Center for Biomedical TechnologiesFederal Medical Biological AgencyMoscow RegionRussia

Personalised recommendations