Effects of Fragmentation of Visual Navigational Signals on the Orientation of Rats in a Radial Maze

  • S. V. AlbertinEmail author

Experiments on rats were carried out to study the effects of fragmentation of visual navigation signals on search behavior in a radial maze with asymmetrical food reinforcement. The dopaminergic system of the brain was found to have an important role in impairments to the animals’ invariant perception of significant sensory objects on removal of one of two adjacent extramaze navigation cues and in determining the location of the largest reinforcement in the maze. The basis of these impairments was found to be deficit of associative memory between the remaining and the remote cues. Possible animal modeling of impairments to sensory perception in neurological diseases due to dysfunction of the dopaminergic system of the brain is assessed.


spatial orientation extramaze signals invariant perception associative memory dopamine rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Albertin, “Effects of the conditioned reflex retraining regime on search behavior in a radial maze in rats,” Ros. Fiziol. Zh., 102, No. 11, 1302–13011 (2016).Google Scholar
  2. 2.
    V. V. Glezer, Vision and Thought, Nauka, St. Petersburg (1993).Google Scholar
  3. 3.
    V. V. Lavrov and A. V. Rudinskii, “Recognition of fragmented images” Sens. Sistemy, 18, No. 4, 317–324 (2004).Google Scholar
  4. 4.
    Yu. E. Shelepin, V. N. Chikhman, O. A. Vakhrameeva, et al., “Invariant perception,” Eksperim. Psikhol., 1, 7–33 (2008).Google Scholar
  5. 5.
    A. Aguilar-Valles, E. Sanchez, P. de Gortari, et al., “Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions,” Neuroendocrinology, 82, 306–319 (2005).CrossRefGoogle Scholar
  6. 6.
    S. V. Albertin and S. I. Wiener, “An urgent relearning of rats in radial maze: The adaptive functions of sleep,” in: The Evolution of Functions: Physiology of Extreme States: Conf. Abstract, St. Petersburg, Russia (2008), pp. 10–11.Google Scholar
  7. 7.
    S. V. Albertin, A. B. Mulder, E. Tabuchi, et al., “Lesions of the medial shell of the nucleus accumbens impair rats in finding larger rewards, but spare reward-seeking behavior,” Behav. Brain Res., 117, 173–183 (2000).CrossRefGoogle Scholar
  8. 8.
    S. V. Albertin and S. I. Wiener, “Neuronal activity in the nucleus accumbens and hippocampus in rats during formation of seeking behavior in a radial maze,” Byull. Eksperim. Biol. Med., 158, No. 4, 405–409 (2015).CrossRefGoogle Scholar
  9. 9.
    M. C. Anderson and C. Green, “Suppressing unwanted memories by executive control,” Nature, 10, No. 6826, 366–369 (2001).CrossRefGoogle Scholar
  10. 10.
    S. Bandyopadhya and J. J. Hablitz, “Dopaminergic modulation of local network activity in rat prefrontal cortex,” J. Neurophysiol., 97, 4120–4128 (2007).CrossRefGoogle Scholar
  11. 11.
    G. Bartholini, “Differential effects of neuroleptic drugs on dopamine turnover in the extra-pyramidal and limbic systems,” J. Pharm. Pharmacol., 28, 429–433 (1976).CrossRefGoogle Scholar
  12. 12.
    A. V. J. Beijer, M. P. Witter, and H. J. Groenewegen, “Relationships of hippocampal and amygdaloid inputs to the nucleus accumbens with outputs to the mesencephalic locomotor region in the rat,” Eur. J. Neurosci., 7, Supplement, 209 (1994).Google Scholar
  13. 13.
    K. Benchenane, A. Peyrache, M. Khamassi, et al., “Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning,” Neuron, 66, 921–936 (2010).CrossRefGoogle Scholar
  14. 14.
    D. B. Carr and S. R. Sesack, “Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons,” J. Neurosci., 20, 3864–3873 (2000).CrossRefGoogle Scholar
  15. 15.
    V. Chikhman, Y. Shelepin, S. Pronin, et al., “Influence of anxiety on recognition of fragmented contour images by human observers,” Perception, 30, Supplement, 88 (2001).Google Scholar
  16. 16.
    J. Cohen and K. Bussey, “Rats form cognitive maps from spatial configurations of proximal arm cues in an enclosed 4-arm radial maze,” Learn. Motivat., 34, No. 2, 168–184 (2003).CrossRefGoogle Scholar
  17. 17.
    C. Da Cunha, M. S. Gevaerd, M. A. Vital, et al., “Memory disruption in rats with nigral lesion induced by MPTP: A model for early Parkinson’s disease amnesia,” Behav. Brain Res., 124, 9–18 (2001).CrossRefGoogle Scholar
  18. 18.
    A. A. Fenton, M. P. Arolfo, L. Nerad, and J. Bures, “Place navigation in the water maze under minimum and redundant extra-maze cue conditions,” Behav. Neural Biol., 62, No. 3, 178–189 (1994).CrossRefGoogle Scholar
  19. 19.
    L. A. Finelli, H. Baumann, A. A. Borbely, and P. Achermann, “Dual electroencephalogram markers of human sleep homeostatic correlation between theta activity in waking and slow-wave activity in sleep,” Neuroscience, 101, 523–529 (2000).CrossRefGoogle Scholar
  20. 20.
    S. B. Floresco, J. K. Seamans, and A. G. Fillips, “Selective role for hippocampal, prefrontal cortical and ventral striatal circuits in radial-arm maze tasks with or without a delay,” J. Neurosci., 17, 1880–1890 (1997).CrossRefGoogle Scholar
  21. 21.
    S. Gluth, T. Sommer, J. Rieskamp, and C. Buchel, “Effective connectivity between hippocampus and ventromedial prefrontal cortex controls preferential choices from memory,” Neuron, 86, 1078–1090 (2015).CrossRefGoogle Scholar
  22. 22.
    F. E. Harrison, A. H. Hosseini, and M. P. McDonald, “Endogenous stress responses in water maze and Barnes maze spatial memory tasks,” Behav. Brain Res., 198, No. 1, 247–251 (2009).CrossRefGoogle Scholar
  23. 23.
    C. Holscher, “Stress impairs performance in spatial water maze learning tasks,” Behav. Brain Res., 100, 225–235 (1999).CrossRefGoogle Scholar
  24. 24.
    M. R. Hunsaker, and R. P. Kesner, “The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory,” Neurosci. Biobehav. Rev., 37, 36–58 (2013).CrossRefGoogle Scholar
  25. 25.
    R. Ito, T. W. Robbins, C. M. Pennartz, and B. J. Everitt, “Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning,” J. Neurosci., 28, 6950–6959 (2008).CrossRefGoogle Scholar
  26. 26.
    C. B. Kirwan, P. E. Gilbert, and R. P. Kesner, “The role of hippocampus in the retrieval of spatial location,” Neurobiol. Learn. Memory, 83, 65–71 (2010).CrossRefGoogle Scholar
  27. 27.
    V. Korz and J. V. Frey, “Hormonal and monoamine signaling during reinforcement of hippocampal long-term potentiation and memory retrieval,” Learn. Memory, 14, 160–166 (2007).CrossRefGoogle Scholar
  28. 28.
    B. A. Kuhl, A. T. Shah, S. DuBrow, and A. D. Wagner, “Resistance to forgetting associated with hippocampus-mediated reactivation during new learning,” Nat. Neurosci., 13, 501–506 (2010).CrossRefGoogle Scholar
  29. 29.
    S. Laatu, A. Revonsuo, L. Pihko, et al., “Visual object recognition deficits in early Parkinson’s disease,” Parkinsonism Relat. Disord., 10, 227–233 (2004).CrossRefGoogle Scholar
  30. 30.
    C. S. Lansink, J. V. Meijer, J. N. Lankelma, et al., “Reward expectancy strengthens CA1 theta and beta band synchronization and hippocampal-ventral striatal coupling,” J. Neurosci., 36, No. 41, 10598–10610 (2016).CrossRefGoogle Scholar
  31. 31.
    S. R. Laviolette, “Dopamine modulation of emotional processing in cortical and subcortical neural circuits: evidence for a final common pathway in schizophrenia?” Schizophr. Bull., 33, No. 4, 971–981 (2007).CrossRefGoogle Scholar
  32. 32.
    W. C. Leon, M. A. Bruno, K. Nader, and A. C. Cuello, “Engagement of the PFC in consolidation and recall of recent spatial memory,” Learn. Memory, 17, 297–305 (2010).CrossRefGoogle Scholar
  33. 33.
    J. E. Lisman and A. A. Grace, “The hippocampal-VTA loop: controlling the entry of information into long-term memory,” Neuron, 46, No. 5, 703–713 (2005).CrossRefGoogle Scholar
  34. 34.
    E. Miyoshi, S. Wietzikoski, M. Camplessei, et al., “Impaired learning in a spatial working memory version and in cued version of the water maze in rats with MPTP-induced mesencephalic dopamine dopaminergic lesions,” Brain Res. Bull., 58, 41–47 (2002).CrossRefGoogle Scholar
  35. 35.
    K. Nader and J. E. LeDoux, “The dopaminergic modulation of fear: quinpirole impairs the recall of emotional memories in rats,” Behav. Neurosci., 113, 152–165 (1999).CrossRefGoogle Scholar
  36. 36.
    P. O’Donnell and A. A. Grace, “Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input,” J. Neurosci., 15, 3622–3639 (1995).CrossRefGoogle Scholar
  37. 37.
    J. O’Keefe and L. Nadel, The Hippocampus as a Cognitive Map, Oxford University Press, Oxford (1978).Google Scholar
  38. 38.
    S. Renaudineau, B. Poucet, and E. Save, “Flexible use of proximal objects and distal cues by hippocampal place cells,” Hippocampus, 17, No. 5, 381–395 (2007).CrossRefGoogle Scholar
  39. 39.
    P. Salgado-Pineda, P. Delaveau, O. Blin, and A. Nieoullon, “Dopaminergic contribution to the regulation of emotional perception,” Clin. Neuropharmacology, 28, 228–237 (2005).CrossRefGoogle Scholar
  40. 40.
    S. R. Sesack and V. Pickel, “Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens and on dopamine neurons of the ventral tegmental area,” J. Comp. Neurol., 320, 145–160 (1992).CrossRefGoogle Scholar
  41. 41.
    R. Shibata, A. B. Mulder, O. Trullier, and S. I. Wiener, “Position sensitivity in phasically discharging nucleus accumbens neurons of rats alternating between tasks requiring complementary types of spatialcues,” Neuroscience, 108, No. 3, 391–411 (2001).CrossRefGoogle Scholar
  42. 42.
    D. Shohamy and A. D. Wagner, “Integrating memories in the human brain: Hippocampal-midbrain encoding of overlapping events,” Neuron, 60, No. 2, 378–389 (2008).CrossRefGoogle Scholar
  43. 43.
    N. Solari, A. Bonita-Oliva, G. Fisone, and R. Brambilla, “Understanding cognitive defi cits in Parkinson’s disease: lessons from preclinical animal models (review),” Learn. Mem., 20, 592–600 (2013), Scholar
  44. 44.
    J. R. St Onge, S. Ahn, A. G. Phillips, and S. B. Floresco, “Dynamic fluctuations in dopamine efflux in the prefrontal cortex and nucleus accumbens during risk-based decision making,” J. Neurosci., 32, 16880–16891 (2012).CrossRefGoogle Scholar
  45. 45.
    C. M. Stopper, M. T. Tse, D. R. Montes, et al., “Overriding phasic dopamine signals redirects action selection during risk/reward decision making,” Neuron, 84, 177–189 (2014).CrossRefGoogle Scholar
  46. 46.
    J. A. Sugam, J. Day, R. M. Wightman, and R. M. Carelli, “Phasic nucleus accumbens dopamine encodes risk-based decision-making behavior,” Biol. Psychiatry, 71, No. 3, 199–205 (2012).CrossRefGoogle Scholar
  47. 47.
    M. T. Tadaiesky, P. A. Dombrowski, C. P. Figueiredo, et al., “Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease,” Neuroscience, 156, 830–840 (2008).CrossRefGoogle Scholar
  48. 48.
    A. M. Thierry, Y. Gioanni, E. Degenetais, and J. Glowinski, “Hippocampo prefrontal cortex pathways: anatomical and electrophysiological characteristics,” Hippocampus, 10, 411–419 (2000).CrossRefGoogle Scholar
  49. 49.
    K. Y. Tseng and P. O’Donnell, “Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms,” J. Neurosci., 24, 5131–5139 (2004).CrossRefGoogle Scholar
  50. 50.
    E. Y. Uc, M. Rizzo, J. V. Andersen, et al., “Impaired navigation in drivers with Parkinson’s disease,” Brain, 130, No. 9, 2433–2440 (2007).CrossRefGoogle Scholar
  51. 51.
    D. Weintraub, P. G. Mober, and W. C. Culbertson, “Evidence for impaired encoding and retrieval memory profi les in Parkinson’s disease,” Cogn. Behav. Neurol., 17, 195–200 (2004).Google Scholar
  52. 52.
    S. I. Wiener, R. Shibata, E. Tabuchi, et al., “Spatial and behavioral correlates in nucleus accumbens neurons receiving hippocampal or prefrontal cortical inputs,” Int. Congr. Ser., 1250, 275–292 (2003).CrossRefGoogle Scholar
  53. 53.
    M. A. Wilson and B. L. McNaughton, “Reactivation of hippocampal ensemble memories during sleep,” Science, 265, 676–679 (1994).CrossRefGoogle Scholar
  54. 54.
    J. Q. Wu, G. J. Peters, P. Rittner, et al., “The hippocampus, medial prefrontal cortex and selective memory retrieval: Evidence from a rodent model of the retrieval induced forgetting effect,” Hippocampus, 24, No. 9, 1070–1080 (2014).CrossRefGoogle Scholar
  55. 55.
    Yong Sang Jo, Eun Hye Park, and Il Hwan Kim, “The medial prefrontal cortex is involved in spatial memory retrieval under partialcue conditions,” J. Neurosci., 27, No. 49, 13567–13578 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations