Advertisement

Cellular-Molecular Mechanisms of the Regulation of Angiogenesis in the Brain

  • V. M. ChertokEmail author
  • N. V. Zakharchuk
  • A. G. Chertok
Article
  • 2 Downloads

This review presents data on the cellular-molecular mechanisms regulating angiogenesis associated with the vascular endothelium. Existing concepts hold that the control of angiogenesis involves activated endothelial cells and their precursors (progenitor cells), which synthesize and release angiogenic molecules with different chemical structures and mechanisms of biological action, but all allowing these cells to control each stage of angiogenesis directly or indirectly. Balanced functioning of the system of molecular stimulators and inhibitors of angiogenesis is particularly important for the brain, as excessive formation of blood vessels, like inadequate development of blood vessels, leads in certain conditions to rapid and irreversible changes in nervous tissue. Post-operative neurorepair cannot occur without adequate reperfusion of the injured part of the brain, which can be supported by timely stimulation of angiogenesis, while intensification of this process in tumors, conversely, has adverse consequences. Tumor growth and metastasis are significantly linked with increases in the level of vascularization of malignant tissue, while blockade of angiogenesis is not infrequently the only productive method of limiting tumor growth. However, we have insufficient knowledge of the mechanisms regulating angiogenesis in the brain at the cellular-molecular level in physiological conditions and pathology, so angiogenic influences do not always produce the expected effect.

Keywords

brain angiogenesis cellular-molecular mechanisms of regulation poststroke reperfusion brain tumors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Arai, G. Jin, D. Navaratna, and E. H. Lo, “Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke,” FEBS J., 276, No. 17, 4644–4652 (2009), https://doi.org/10.1111/j.1742–4658.2009.07176.x.Google Scholar
  2. 2.
    Q. B. Xu, “Endothelial progenitor cells in angiogenesis,” Sheng Li Xue Bao, 57, No. 1, 1–6 (2005).Google Scholar
  3. 3.
    D. Ribatti, B. Nico, and E. Crivellato, “Morphological and molecular aspects of physiological vascular morphogenesis,” Angiogenesis, 12, No. 2, 101–111 (2009),  https://doi.org/10.1007/s10456-008-9125-1.Google Scholar
  4. 4.
    T. G. Liman and M. Endres, “New vessels after stroke: postischemic neovascularization and regeneration,” Cerebrovasc. Dis., 33, No. 5, 492–499 (2012),  https://doi.org/10.1159/000337155.Google Scholar
  5. 5.
    H. Guo, H. Zhou, J. Lu, et al., “Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury,” Neural Regen. Res., 11, No. 1, 174–179 (2016),  https://doi.org/10.4103/1673-5374.175067.Google Scholar
  6. 6.
    J. Jo, D. Schiff, and B. Purow, “Angiogenic inhibition in high-grade gliomas: past, present and future,” Expert Rev. Neurother., 12, No. 6, 733–747 (2012),  https://doi.org/10.1586/ern.12.53.Google Scholar
  7. 7.
    P. A. Motavkin, A. V. Lomakin, and V. M. Chertok, Brain Capillaries, Far East Scientific Center, Academy of Sciences of the USSR, Vladivostok (1983).Google Scholar
  8. 8.
    N. Ferrara, “Vascular endothelial growth factor as a target for anticancer therapy,” Oncologist, 9, 2–10 (2004),  https://doi.org/10.1634/theoncologist.9-suppl_1-2.Google Scholar
  9. 9.
    M. Enge, M. Bjarnegard, H. Gerhardt, et al., “Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy,” EMBO J., 21, 4307–4316 (2002),  https://doi.org/10.1093/emboj/cdf418.Google Scholar
  10. 10.
    S. Keerl, S. Gehmert, S. Gehmert, et al., “PDGF and bFGF modulate tube formation in adipose tissue-derived stem cells,” Ann. Plast. Surg., 64, No. 4, 487–490 (2010),  https://doi.org/10.1097/SAP.0b013e31819f3a3d.Google Scholar
  11. 11.
    V. M. Chertok, “Local features of the infrastructure of intracerebral arteries in the human fetus,” Zh. Nevrol. Psikhiat., 88, No. 10, 55–58 (1988).Google Scholar
  12. 12.
    V. M. Chertok and A. G. Chertok, “The regulatory potential of brain capillaries,” Pacific Med. J., 2, 72–81 (2016),  https://doi.org/10.17238/1609-1175.2016.2.72.Google Scholar
  13. 13.
    D. Ribatti, B. Nico, and E. Crivellato, “The role of pericytes in angiogenesis,” Int. J. Dev. Biol., 55, No. 3, 261–268 (2011),  https://doi.org/10.1387/ijdb.103167dr.Google Scholar
  14. 14.
    A. V. Lomakin and V. M. Chertok, “The development of brain capillaries in the human brain,” Zh. Nevrol. Psikhiat., 82, No. 7, 1004–1007 (1983).Google Scholar
  15. 15.
    B. Engelhardt and S. Liebner, “Novel insights into the development and maintenance of the blood-brain barrier,” Cell. Tiss. Res., 355, No. 3, 687–699 (2014),  https://doi.org/10.1007/s00441-014-1811-2.Google Scholar
  16. 16.
    V. M. Chertok, “Developmental changes in human brain capillaries (a histochemical study),” Morfologiya, 88, No. 2, 28–35 (1985).Google Scholar
  17. 17.
    V. M. Chertok and N. V. Miroshnichenko, “Histochemical characteristics of the vascular-capillary bed of the brain in aging and atherosclerosis,” Zh. Nevrol. Psikhiat., 84, No. 7, 997–1000 (1984).Google Scholar
  18. 18.
    S. P. Herbert and D. Y. Stainier, “Molecular control of endothelial cell behaviour during blood vessel morphogenesis,” Nat. Rev. Mol. Cell Biol., 12, No. 9, 551–564 (2011),  https://doi.org/10.1038/nrm3176.Google Scholar
  19. 19.
    S. Sen, S. P. McDonald, P. T. Coates, and C. S. Bonder, “Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease,” Clin. Sci. (Lond.), 120, 263–283 (2011),  https://doi.org/10.1042/cs20100429.Google Scholar
  20. 20.
    V. P. Chekhonin, S. A. Shein, A. A. Korchagina, and O. I. Gurina, “The role of VEGF in the development of neoplastic angiogenesis,” Vestn. Ross. Akad. Med. Nauk, 67, No. 2, 23–34 (2012),  https://doi.org/10.15690/vramn.v67i2.119.Google Scholar
  21. 21.
    K. Gaengel, G. Genové, A. Armulik, and C. Betsholtz, “Endothelialmural cell signaling in vascular development and angiogenesis,” Arterioscler. Thromb. Vasc. Biol., 29, No. 5, 630–638 (2009), https://doi.org/  https://doi.org/10.1161/ATVBAHA.107.161521.Google Scholar
  22. 22.
    M. Lohela, M. Bry, T. Tammela, and K. Alitalo, “VEGFs and receptors involved in angiogenesis versus lymphangiogenesis,” Curr. Opin. Cell Biol., 21, No. 2, 154–165 (2009),  https://doi.org/10.1016/j.ceb.2008.12.012.Google Scholar
  23. 23.
    S. Patel-Hett and P. A. D’Amore, “Signal transduction in vasculogenesis and developmental angiogenesis,” Int. J. Dev. Biol., 55, No. 4–5, 353–363 (2011),  https://doi.org/10.1387/ijdb.103213sp.Google Scholar
  24. 24.
    M. Potente, H. Gerhardt, and P. Carmeliet, “Basic and therapeutic aspects of angiogenesis,” Cell, 146, No. 6, 873–887 (2011),  https://doi.org/10.1016/j.cell.2011.08.039.Google Scholar
  25. 25.
    N. Kubis and B. I. Levy, “Vasculogenesis and angiogenesis: molecular and cellular controls. Part I: growth factors,” Morphologie, 87, No. 276, 23–30 (2003).Google Scholar
  26. 26.
    A. Bikfalvi, “Platelet factor 4: an inhibitor of angiogenesis,” Semin. Thromb. Hemost., 30, No. 3, 379–385 (2004),  https://doi.org/10.1055/s-2004-831051.Google Scholar
  27. 27.
    H. Gerhardt and C. Betsholtz, “Endothelial-pericyte interactions in angiogenesis,” Cell. Tiss. Res., 314, No. 1, 15–23 (2003).Google Scholar
  28. 28.
    P. C. Stapor, R. S. Sweat, D. C. Dashti, et al., “Pericyte dynamics during angiogenesis: new insights from new identities,” J. Vasc. Res., 51, No. 3, 163–174 (2014),  https://doi.org/10.1159/000362276.Google Scholar
  29. 29.
    J. A. Siegenthaler, Y. Choe, K. P. Patterson, et al., “Foxc1 is required by pericytes during fetal brain angiogenesis,” Biol. Open, 2, No. 7, 647–659 (2013),  https://doi.org/10.1242/bio.20135009.Google Scholar
  30. 30.
    M. R. Alexander and G. K. Owens, “Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease,” Annu. Rev. Physiol., 74, 13–40 (2012),  https://doi.org/10.1146/annurev-physiol-012110-142315.Google Scholar
  31. 31.
    A. Tomlinson, A. Van Vlijmen, A. Loesch, and G. Burnstock, “An immunohistochemical study of endothelial cell heterogeneity in the rat: observations in ‘en face’ Hаutchen preparations,” Cell. Tiss. Res., 263, No. 1, 173–181 (1991),  https://doi.org/10.1007/bf00318413.Google Scholar
  32. 32.
    M. Brzozowa, L. Mielaсczyk, M. Michalski, et al., “Role of Notch signaling pathway in gastric cancer pathogenesis,” Contemp. Oncol. (Pozn.), 17, No. 1, 1–5 (2013),  https://doi.org/10.5114/wo.2013.33765.Google Scholar
  33. 33.
    I. Moreno-Miralles, J. C. Schisler, and C. Patterson, “New insights into bone morphogenetic protein signaling: focus on angiogenesis,” Curr. Opin. Hematol., 16, No. 3, 195–201 (2009),  https://doi.org/10.1097/MOH.0b013e32832a07d6.Google Scholar
  34. 34.
    I. Noguera-Troise, C. Daly, N. J. Papadopoulos, et al., “Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis,” Nature, 444, 1032–1037 (2006),  https://doi.org/10.1038/nature05355.Google Scholar
  35. 35.
    R. J. Medina, C. L. O’Neill, M. Sweeney, et al., “Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities,” BMC Med. Genomics, 3, 18 (2010),  https://doi.org/10.1186/1755-8794-3-18.Google Scholar
  36. 36.
    A. Kawamoto and D. W. Losordo, “Endothelial progenitor cells for cardiovascular regeneration,” Trends. Cardiovasc. Med., 18, No. 1, 33–37 (2008),  https://doi.org/10.1016/j.tcm.2007.11.004.Google Scholar
  37. 37.
    T. Asahara, T. Murohara, A. Sullivan, et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, 275, No. 5302, 964–967 (1997),  https://doi.org/10.1126/science.275.5302.964.Google Scholar
  38. 38.
    Q. Shi, S. Rafii, M. H. Wu, et al., “Evidence for circulating bone marrow-derived endothelial cells,” Blood, 92, 362–367 (1998).Google Scholar
  39. 39.
    Yu. A. Belova, Yu. Yu. Chuksina, S. V. Shevelev, et al., “Levels of endothelial progenitor cells in patients with ischemic stroke and the effectiveness of rehabilitation,” Alman. Klin. Med., 39, 45–50 (2015),  https://doi.org/10.18786/2072-0505-2015-39-45-50.Google Scholar
  40. 40.
    T. Asahara, “Endothelial progenitor cells for vascular medicine,” Yakugaku Zasshi, 5, No. 127, 841–845 (2007),  https://doi.org/10.1248/yakushi.127.841.Google Scholar
  41. 41.
    M. Navarro-Sobrino, A. Rosell, M. Hernandez-Guillamon, et al., “Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke,” Microvasc. Res., 80, No. 3, 317–323 (2010),  https://doi.org/10.1016/j.mvr.2010.05.008.Google Scholar
  42. 42.
    K. Arai, J. Lok, S. Guo, et al., “Cellular mechanisms of neurovascular damage and repair after stroke,” J. Child Neurol., 26, No. 9, 1193–1198 (2011),  https://doi.org/10.1177/0883073811408610.Google Scholar
  43. 43.
    F. Timmermans, F. Van Hauwermeiren, M. De Smedt, et al., “Endothelial outgrowth cells are not derived from CD133+ cells or CD45+hematopoietic precursors,” Arterioscler. Thromb. Vasc. Biol., 27, No. 7, 1572–1579 (2007),  https://doi.org/10.1161/atvbaha.107. 144972.
  44. 44.
    E. Chavakis, A. Aicher, C. Heeschen, et al., “Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells,” J. Exp. Med., 201, No. 1, 63–72 (2005),  https://doi.org/10.1084/jem.20041402.Google Scholar
  45. 45.
    E. I. Gusev and V. I. Skvortsova, Cerebral Ischemia, Meditsina, Moscow (2001).Google Scholar
  46. 46.
    L. Ruan, B. Wang, Q. ZhuGe, and K. Jin, “Coupling of neurogenesis and angiogenesis after ischemic stroke,” Brain Res., 1623, 166–173 (2015),  https://doi.org/10.1016/j.brainres.2015.02.042.Google Scholar
  47. 47.
    J. H. Zhang, H. Yu, N. Zhou, et al., “Early exercise improves cerebral blood flow through increased angiogenesis in experimental stroke rat model,” J. Neuroeng. Rehabil., 1, No. 10, 43 (2013),  https://doi.org/10.1186/1743-0003-10-43.Google Scholar
  48. 48.
    G. A. Donnan, J.-C. Baron, S. M. Davis, and F. R. Sharp (eds.), Ischemic Penumbra, CRC Press (2007).Google Scholar
  49. 49.
    J. Krupinski, J. Kaluza, P. Kumar, et al., “Some remarks on the growth-rate and angiogenesis of microvessels in ischemic stroke. Morphometric and immunocytochemical studies,” Patol. Polska, 44, No. 4, 203–209 (1993).Google Scholar
  50. 50.
    M. Aslam, K. D. Schluter, S. Rohrbach, et al., “Hypoxia-reoxygenation- induced endothelial barrier failure: role of RhoA, Rac1 and myosin light chain kinase,” J. Physiol., 591, No. 2, 461–473 (2013),  https://doi.org/10.1113/jphysiol.2012.237834.Google Scholar
  51. 51.
    Z. G. Zhang, L. Zhang, Q. Jiang, et al., “VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain,” J. Clin. Invest., 106, No. 7, 829–838 (2000),  https://doi.org/10.1172/jci9369.Google Scholar
  52. 52.
    K. Hirota and G. L. Semenza, “Rac1 activity is required for the activation of hypoxia-inducible factor 1,” J. Biol. Chem., 276, No. 24, 21166–21172 (2001),  https://doi.org/10.1074/jbc.m100677200.Google Scholar
  53. 53.
    V. M. Chertok, A. E. Kotsyuba, M. S. Startseva, and E. P. Kotsyuba, “Immunolocalization of gas transmitters in internuclear interneurons in the medulla oblongata in rats,” Neirokhimiya, 2, No. 33, 95–102 (2016),  https://doi.org/10.7868/S1027813316010040.Google Scholar
  54. 54.
    J. Chen, A. Zacharek, C. Zhang, et al., “Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice,” J. Neurosci., 25, No. 9, 2366–2375 (2005),  https://doi.org/10.1523/jneurosci.5071-04.2005.Google Scholar
  55. 55.
    R. L. Zhang, Z. G. Zhang, and M. Chopp, “Targeting nitric oxide in the subacute restorative treatment of ischemic stroke,” Expert. Opin. Invest. Drugs, 22, No. 7, 843–851 (2013),  https://doi.org/10.1517/13543784.2013.Google Scholar
  56. 56.
    V. P. Reutov and V. P. Chertok, “New concepts on the role of the autonomic nervous system and the nitric oxide-generating system in brain vessels,” Tihhookean. Med. Zh., No. 2, 10–20 (2016),  https://doi.org/10.17238/pmj1609-1175.2016.2.10-20.
  57. 57.
    V. P. Reutov, V. M. Chertok, V. N. Shvalev, et al., “The sympathetic component of the autonomic nervous system of brain blood vessels and the transmitters noradrenaline and adrenaline protect the endothelium and intimal cells from the harmful actions of nitrogen dioxide (NO2) formed at sites of vessel bifurcations in impairments to the nitric oxide and superoxide anion radical cycles,” in: Proc. 18th Int.Sci. Conf. of the Eurasian Science Union (2016), Vol. 6, No. 18, pp. 36–42.Google Scholar
  58. 58.
    A. E. Kotsyuba, V. M. Chertok, and E. P. Kotsyuba, “Nitroxidergic nerve fibers of intracerebral vessels,” Neurosci. Behav. Physiol., 4, No. 40, 451–455 (2010),  https://doi.org/10.1007/s11055-010-9278-4.Google Scholar
  59. 59.
    E. Hamel, “Perivascular nerves and the regulation of cerebrovascular tone,” J. Appl. Physiol., 100, No. 3, 1059–1064 (1985),  https://doi.org/10.1152/japplphysiol.00954.2005.Google Scholar
  60. 60.
    V. M. Chertok and A. E. Kotsyuba, “Comparative study of catecholaminergic and nitroxidergic neurons in the vasomotor nuclei of the caudal part of the brainstem in rats,” Neurosci. Behav. Physiol., 46, No. 2, 229–234 (2016),  https://doi.org/10.1007/s11055-015-0215-4.Google Scholar
  61. 61.
    A. E. Kotsyuba, M. S. Startseva, and V. M. Chertok, “Topochemistry of internuclear interneurons in the human brainstem in arterial hypertension,” Zh. Nevrol. Psikhiat., 115, No. 11, 15–20 (2015),  https://doi.org/10.17116/jnevro201511511115-20.Google Scholar
  62. 62.
    V. M. Chertok, A. E. Kotsyuba, and M. S. Startseva, “Internuclear interneurons in the human brainstem,” Vestn. Ross. Akad. Med. Nauk., 70, No. 5, 608–613 (2015),  https://doi.org/10.15690/vramn.v70.i5.1450.Google Scholar
  63. 63.
    V. M. Chertok, “Mast cells in the tunica externa of arteries at the base of the brain,” Arkh. Anat. Patol. Embriol., 79, No. 11, 72–79 (1980).Google Scholar
  64. 64.
    P. A. Motavkin, V. M. Chertok, and S. D. Shul’ga, “Effects of acetylcholine on mast cells in the dura mater,” Byull. Eksperim. Biol. Med., 87, No. 5, 489–491 (1979).Google Scholar
  65. 65.
    R. J. Blair, H. Meng, M. J. Marchese, et al., “Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor,” J. Clin. Invest., 11, No. 99, 2691–2700 (1997),  https://doi.org/10.1172/jci119458.Google Scholar
  66. 66.
    T. Bogoslovsky, A. Chaudhry, L. Latour, et al., “Endothelial progenitor cells correlate with lesion volume and growth in acute stroke,” Neurology, 75, No. 23, 2059–2062 (2010),  https://doi.org/10.1212/WNL.0b013e318200d741.Google Scholar
  67. 67.
    K. Overgaard, “The effects of citicoline on acute ischemic stroke: a review,” J. Stroke Cerebrovasc. Dis., 23, No. 7, 1764–1769 (2014), https://doi.org/10.10.16/j.jstrokecerebrovasdis.2014.01.0.Google Scholar
  68. 68.
    T. Sobrino, R. Rodriguez-Gonzalez, M. Blanco, et al., “CDP-choline treatment increases circulating endothelial progenitor cells in acute ischemic stroke,” Neurol. Res., 33, No. 6, 572–577 (2011),  https://doi.org/10.1179/016164110x12807570510176.Google Scholar
  69. 69.
    C. V. Borlongan, L. E. Glover, N. Tajiri, et al., “The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders,” Prog. Neurobiol., 95, No. 2, 213–228 (2011),  https://doi.org/10.1016/j.pneurobio.2011.08.005.Google Scholar
  70. 70.
    Y. Chen, Q. Li, J. Tang, et al., “The evolving roles of pericyte in early brain injury after subarachnoid hemorrhage,” Brain Res., 1623, 110–122 (2015),  https://doi.org/10.1016/j.brainres.2015.05.004.Google Scholar
  71. 71.
    A. L. Dombrovskii, I. V. Sergienko, A. V. Rvacheva, et al., “Effects of atorvastatin treatment at different doses on endothelial progenitor cells and angiogenic factors in patients with ischemic heart disease,” Ateroskleroz Dislipid., 2, No. 19, 56–68 (2015).Google Scholar
  72. 72.
    J. Folkman, “Angiogenesis,” Ann. Rev. Med., 57, No. 1, 1–18 (2006),  https://doi.org/10.1146/annurev.med.57.121304.131306.Google Scholar
  73. 73.
    M. S. O’Reilly, T. Boehm, Y. Shing, et al., “Endostatin: An endogenous inhibitor of angiogenesis and tumor growth,” Cell, 88, No. 2, 277–285 (1997),  https://doi.org/10.1016/s0092-8674(00)81848-6.
  74. 74.
    Y. Mirochnik, A. Kwiatek, and O. V. Volpert, “Thrombospondin and apoptosis: molecular mechanisms and use for design of complementation treatments,” Curr. Drug Targ., 9, No. 10, 851–862 (2008),  https://doi.org/10.2174/138945008785909347.Google Scholar
  75. 75.
    M. Paez-Ribes, E. Allen, J. Hudock, et al., “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell, 15, No. 3, 220–231 (2009),  https://doi.org/10.1016/j.ccr.2009.01.027.Google Scholar
  76. 76.
    N. Ferrara and R. S. Kerbel, “Angiogenesis as a therapeutic target,” Nature, 438, No. 7070, 967–974 (2005),  https://doi.org/10.1038/nature04483.Google Scholar
  77. 77.
    X. Lu, L. Duan, H. Xie, et al., “Evaluation of MMP-9 and MMP-2 and their suppressor TIMP-1 and TIMP-2 in adenocarcinoma of esophagogastric junction,” Onco Targets Ther., 9, 4343–4349 (2016),  https://doi.org/10.2147/OTT.S99580.Google Scholar
  78. 78.
    V. Tjomsland, E. Pomianowska, M. Aasrum, et al., “Profile of MMP and TIMP Expression in human pancreatic stellate cells: Regulation by IL-1α and TGFβ and implications for migration of pancreatic cancer cells,” Neoplasia, 18, No. 7, 447–456 (2016),  https://doi.org/10.1016/j.neo.2016.06.003.Google Scholar
  79. 79.
    Z. Liu, F. Fan, A. Wang, et al., “Dll4-Notch signaling in regulation of tumor angiogenesis,” J. Cancer Res. Clin. Oncol., 140, No. 4, 525–536 (2014),  https://doi.org/10.1007/s00432-013-1534-x.Google Scholar
  80. 80.
    A. Garcia and J. J. Kandel, “Notch: a key regulator of tumor angiogenesis and metastasis,” J. Histol. Histopathol., 27, No. 2, 151–156 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. M. Chertok
    • 1
    Email author
  • N. V. Zakharchuk
    • 1
  • A. G. Chertok
    • 1
  1. 1.Pacific State Medical UniversityVladivostokRussia

Personalised recommendations