Neuroscience and Behavioral Physiology

, Volume 49, Issue 3, pp 331–340 | Cite as

Cannabinoidergic Regulation of the Functional State of the Heart. The Role of the Autonomic Nervous System

  • A. V. Krylatov
  • L. N. MaslovEmail author
  • I. F. Nam
  • Yu. V. Bushov

Cannabinoids have been shown to induce long-lasting hypotension and bradycardia, which can be preceded by transient tachycardia and hypertension associated with activation of vanilloid TRPV1 receptors. Prolonged hypotension and bradycardia are consequences of the stimulation of cannabinoid CB1 receptors. Endogenous cannabinoids are not involved in regulating heart rate or arterial blood pressure in intact animals. Cannabinoid-induced bradycardia results from the sympatholytic and vagotonic actions of cannabinoids. Prolonged hypotension results from cannabinoid-induced vasorelaxation. Activation of presynaptic CB1 receptors located on sympathetic terminals innervating the heart and arteries leads to inhibition of noradrenaline release from these terminals. Endogenous cannabinoids have cardioprotective effects in coronary occlusion, inhibiting sympathetic influences on the myocardium. Anandamide, which activates TRPV1 receptors, can induce the Bezold–Jarisch reflex. Stimulation of presynaptic CB1 receptors promotes reductions in CGRP (calcitonin gene-related peptide) release from the afferent terminals of the vagus nerve. Stimulation of vanilloid TRPV1 receptors, conversely, induces CGRP release from the sensory fibers of the vagus nerve. The brainstem nuclei may take part in the cardiovascular effects of cannabinoids seen on i.v. administration of CB agonists.


endogenous cannabinoids heart autonomic nervous system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. N. Maslov, J. Hedrick, R. Meshoulam, et al., “The role of transactivation of receptors in the cardioprotective effects of preconditioning and postconditioning,” Ros. Fiziol. Zh., 98, No. 3, 305–317 (2012).Google Scholar
  2. 2.
    M. D. Adams, L. D. Chait, and J. T. Earnhardt, “Tolerance to the cardiovascular effects of Δ9-tetrahydrocannabinol in the rat,” Br. J. Pharmacol., 56, No. 1, 43–48 (1976).Google Scholar
  3. 3.
    A. Altinok, Z. M. Coşkun, K. Karaoglu, et al., “Δ9-Tetrahydrocannabinol treatment improved endothelium-dependent relaxation on streptozotocin/nicotinamide-induced diabetic rat aorta,” Acta Physiol. Hung., 102, No. 1, 51–59 (2015).Google Scholar
  4. 4.
    W. S. Aronow and J. Cassidy, “Effect of marihuana and placebo-marihuana smoking on angina pectoris,” New Engl. J. Med., 29, No. 2, 65–67 (1974).Google Scholar
  5. 5.
    A. Bonz, M. Laser, S. Kullmer, et al., “Cannabinoids acting on CB1 receptors decrease contractile performance in human atrial muscle,” J. Cardiovasc. Pharmacol., 4, No. 4, 657–664 (2003).Google Scholar
  6. 6.
    T. P. Bright, M. O. Farber, D. J. Brown, and R. B. Forney, “Cardiopulmonary toxicity of Δ9-tetrahydrocannabinol in the anesthetized dog,” Toxicol. Appl. Pharmacol., 3, No. 1, 100–106 (1975).Google Scholar
  7. 7.
    G. Burdyga, A. Varro, R. Dimaline, et al., “Expression of cannabinoid CB1 receptors by vagal afferent neurons: kinetics and role in influencing neurochemical phenotype,” Am. J. Physiol. Gastrointest. Liver Physiol., 299, No. 1, 63–69 (2010).Google Scholar
  8. 8.
    G. A. Cabral, G. A. Ferreira, and M. Jamerson, “Endocannabinoids and the immune system in health and disease,” in Endocannabinoids, R. G. Pertwee (ed.), Handb. Exp. Pharmacol., 231, 185–211 (2015).Google Scholar
  9. 9.
    M. G. Cascio and P. Marini, “Biosynthesis and fate of endocannabinoids,” in: Endocannabinoids, R. G. Pertwee (ed.), Handb. Exp. Pharmacol., 231, 39–58 (2015).Google Scholar
  10. 10.
    I. Cavero, R. Erte, J. P. Buckley, and B. S. Jandhyala, “Effects of (–)-Δ9-trans-tetrahydrocannabinol on regional blood flow in anesthetized dogs,” Eur. J. Pharmacol., 20, No. 3, 373–376 (1972).Google Scholar
  11. 11.
    I. Cavero, J. P. Buckley, and B. S. Jandhyala, “Hemodynamic and myocardial effects of (–)-Δ9-trans-tetrahydrocannabinol in anesthetized dogs,” Eur. J. Pharmacol., 24, No. 2, 243–251 (1973).Google Scholar
  12. 12.
    I. Cavero, M. F. Lokhandwala, J. P. Buckley, and B. S. Jandhyala, “The effect of (–)-Δ9-trans-tetrahydrocannibinol on myocardial contractility and venous return in anesthetized dogs,” Eur. J. Pharmacol., 29, No. 1, 74–82 (1974).Google Scholar
  13. 13.
    N. L. Cluny, E. D. Baraboi, K. Mackie, et al., “High fat diet and body weight have different effects on cannabinoid CB1 receptor expression in rat nodose ganglia,” Auton. Neuroscience, 179, No. 1–2, 122–130 (2013).Google Scholar
  14. 14.
    G. D. Dalton, C. E. Bass, C. G. Van Horn, and A. C. Howlett, “Signal transduction via cannabinoid receptors,” CNS Neurol. Disord. Drug Targets, 8, No. 6, 422–431 (2009).Google Scholar
  15. 15.
    C. Dean, “Cannabinoid and GABA modulation of sympathetic nerve activity and blood pressure in the dorsal periaqueductal gray of the rat,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 301, No. 6, 1765–1772 (2011).Google Scholar
  16. 16.
    C. Dean, C. J. Hillard, J. L. Seagard, et al., “Components of the cannabinoid system in the dorsal periaqueductal gray are related to resting heart rate,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 311, No. 2, 254–262 (2016).Google Scholar
  17. 17.
    W. A. Devane, L. Hanus, A. Breuer, et al., “Isolation and structure of a brain constituent that binds to the cannabinoid receptor,” Science, 258, No. 5090, 1946–1949 (1992).Google Scholar
  18. 18.
    W. L. Dewey, J. Jenkins, T. O’Rourke, and L. S. Harris, “The effect of chronic administration of trans-Δ9-tetrahydrocannabinol on behavior and the cardiovascular system of dogs,” Arch. Int. Pharmacodyn. Ther., 198, No. 1, 118–131 (1972).Google Scholar
  19. 19.
    E. F. Domino, “Neuropsychologic studies of marihuana. Some synthetic and natural THC derivates in animals and man,” Ann. N. Y. Acad. Sci., 191, 166–191 (1971).Google Scholar
  20. 20.
    A. Franco-Cereceda, J. M. Lundberg, A. Saria, et al., “Calcitonin gene-related peptide: release by capsaicin and prolongation of the action potential in the guinea-pig heart,” Acta Physiol. Scand., 132, No. 2, 181–190 (1988).Google Scholar
  21. 21.
    E. Friedman, S. Gershon, B. Hine, and M. Torrelio, “Cardiovascular effects of Δ9-tetrahydrocannabinol in conscious and anesthetized dogs,” Br. J. Pharmacol., 59, No. 4, 561–563 (1977).Google Scholar
  22. 22.
    S. Galiegue, S. Mary, J. Marchand, et al., “Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations,” Eur. J. Biochem., 232, No. 1, 54–61 (1995).Google Scholar
  23. 23.
    S. M. Gardiner, J. E. March, P. A. Kemp, and T. Bennett, “Complex regional haemodynamic effects of anandamide in conscious rats,” Br. J. Pharmacol., 135, No. 8, 1889–1896 (2002).Google Scholar
  24. 24.
    I. Gomes, J. S. Grushko, U. Golebiewska, et al., “Novel endogenous peptide agonists of cannabinoid receptors,” FASEB J., 23, No. 9, 3020–3029 (2009).Google Scholar
  25. 25.
    D. A. Gorelick, R. S. Goodwin, E. Schwilke, et al., “Tolerance to effects of high-dose oral Δ9-tetrahydrocannabinol and plasma cannabinoid concentrations in male daily cannabis smokers,” J. Anal. Toxicol., 37, No. 1, 11–16 (2013).Google Scholar
  26. 26.
    E. Grzeda, E. Schlicker, M. Toczek, et al., “CB1 receptor activation in the rat paraventricular nucleus induces bi-directional cardiovascular effects via modification of glutamatergic and GABAergic neurotransmission,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 390, No. 1, 25–35 (2017).Google Scholar
  27. 27.
    L. Hanus, S. Abu-Lafi , E. Fride, et al., “2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor,” Proc. Natl. Acad. Sci. USA, 98, No. 7, 3662–3665 (2001).Google Scholar
  28. 28.
    B. Hine, “Morphine and delta 9-tetrahydrocannabinol: two-way cross tolerance for antinociceptive and heart-rate responses in the rat,” Psychopharmacology, 87, No. 1, 34–38 (1985).Google Scholar
  29. 29.
    B. Hine, M. Torrelio, and S. Gershon, “Analgesic, heart rate, and temperature effects of Δ8-THC during acute and chronic administration to conscious rats,” Pharmacology, 15, No. 1, 65–72 (1977).Google Scholar
  30. 30.
    L. E. Hollister, R. K. Richards, and H. K. Gillespie, “Comparison of tetrahydrocannabinol and synhexyl in man,” Clin. Pharmacol. Ther., 9, No. 6, 783–791 (1968).Google Scholar
  31. 31.
    E. A. Holman, A. Guijarro, J. Lim, and D. Piomelli, “Effects of acute stress on cardiac endocannabinoids, lipogenesis, and inflammation in rats,” Psychosom. Med., 76, No. 1, 20–28 (2014).Google Scholar
  32. 32.
    A. C. Howlett, “Cannabinoid receptor signaling. Cannabinoids,” in: Handbook of Experimental Pharmacology, R. G. Pertwee (ed.), Springer-Verlag (2005), pp. 53–80.Google Scholar
  33. 33.
    A. C. Howlett, L. C. Blume, and G. D. Dalton, “CB1 cannabinoid receptors and their associated proteins,” Curr. Med. Chem., 17, No. 14, 1382–1393 (2010).Google Scholar
  34. 34.
    B. M. Ibrahim and A. A. Abdel-Rahman, “Role of brainstem GABAergic signaling in central cannabinoid receptor evoked sympathoexcitation and pressor responses in conscious rats,” Brain Res., 1414, 1–9 (2011).Google Scholar
  35. 35.
    B. S. Jandhyala, K. P. Malloy, and J. P. Buckley, “Effects of acute administration of Δ9-tetrahydrocannabinol on pulmonary hemodynamics of anesthetized dogs,” Eur. J. Pharmacol., 38, No. 1, 183–187 (1976).Google Scholar
  36. 36.
    B. S. Jandhyala and A. T. Hamed, “Pulmonary and systemic hemodynamic effects of delta9-tetrahydrocannabinol in conscious and morphine-chloralose-anesthetized dogs: anesthetic influence on drug action,” Eur. J. Pharmacol., 53, No. 1, 63–68 (1978).Google Scholar
  37. 37.
    H. Kawasaki, S. Watanabe, and S. Ueki, “Effects of chronic administration of delta 9-tetrahydrocannabinol on the cardiovascular system, and pressor and behavioral responses to brain stimulation in freely moving rats,” Eur. J. Pharmacol., 65, No. 1, 63–69 (1980).Google Scholar
  38. 38.
    S. Kaymakcalan and S. Sivil, “Lack of tolerance to the bradycardic effect of Δ9-trans-tetrahydrocannabinol in rats,” Pharmacology, 12, No. 4–5, 290–295 (1974).Google Scholar
  39. 39.
    A. V. Krylatov, L. N. Maslov, S. Yu. Ermakov, et al., “Significance of cardiac cannabinoid receptors in regulation of cardiac rhythm, myocardial contractility, and electrophysiologic process in heart,” Biol. Bull., 34, No. 1, 28–35 (2007).Google Scholar
  40. 40.
    J. Kurihara, M. Nishigaki, S. Suzuki, et al., “2-Arachidonoylglycerol and anandamide oppositely modulate norepinephrine release from the rat heart sympathetic nerves,” Jpn. J. Pharmacol., 87, No. 1, 93–96 (2001).Google Scholar
  41. 41.
    C. M. Kurz, C. Gottschalk, E. Schlicker, and M. Kathmann, “Identification of a presynaptic cannabinoid CB1 receptor in the guinea-pig atrium and sequencing of the guinea-pig CB1 receptor,” J. Physiol. Pharmacol., 59, No. 1, 3–15 (2008).Google Scholar
  42. 42.
    K. D. Lake, D. R. Compton, K. Varga, et al., “Cannabinoid-induced hypotension and bradycardia in rats is mediated by CB1-like cannabinoid receptors,” J. Pharmacol. Exp. Ther., 281, No. 3, 1030–1037 (1997).Google Scholar
  43. 43.
    J. D. Leggett, S. Aspley, S. R. Beckett, et al., “Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors,” Br. J. Pharmacol., 141, No. 2, 253–262 (2004).Google Scholar
  44. 44.
    S. Ł. Lupinski, E. Schlicker, A. Pędzińska-Betiuk, and B. Malinowska, “Acute myocardial ischemia enhances the vanilloid TRPV1 and serotonin 5-HT3 receptor-mediated Bezold-Jarisch reflex in rats,” Pharmacol. Rep., 63, No. 6, 1450–1459 (2011).Google Scholar
  45. 45.
    B. Malinowska, G. Kwolek, and M. Gothert, “Anandamide and methanandamide induce both vanilloid VR1-and cannabinoid CB1-receptor-mediated changes in heart rate and blood pressure in anaesthetized rats,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 364, No. 6, 562–569 (2001a).Google Scholar
  46. 46.
    B. Malinowska, J. Piszcz, B. Koneczny, et al., “Modulation of the cardiac autonomic transmission of pithed rats by presynaptic opioid OP4 and cannabinoid CB1-receptors,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 364, No. 3, 233–241 (2001b).Google Scholar
  47. 47.
    L. A. Malit, R. E. Johnstone, D. I. Bourke, et al., “Intravenous Δ9-tetrahydrocannabinol: Effects on ventilatory control and cardiovascular dynamics,” Anesthesiology, 42, No. 6, 666–673 (1975).Google Scholar
  48. 48.
    L. A. Matsuda, S. J. Lolait, M. J. Brownstein, et al., “Structure of a cannabinoid receptor and functional expression of the cloned cDNA,” Nature, 346, No. 6284, 561-564 (1990).Google Scholar
  49. 49.
    R. Mechoulam, S. Ben-Shabat, L. Hanus, et al., “Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors,” Biochem. Pharmacol., 50, No. 1, 83–90 (1995).Google Scholar
  50. 50.
    R. Mechoulam and Y. Gaoni, “Hashish. IV. The isolation and structure of cannabinolic canna-bidiolic and cannabigerolic acids,” Tetrahedron, 21, No. 5, 1223–1229 (1965).Google Scholar
  51. 51.
    G. Milman, Y. Maor, S. Abu-Lafi , et al., “N-arachidonoyl L-serine, an endocannabinoid-like brain constituent with vasodilatory properties,” Proc. Natl. Acad. Sci. USA, 103, No. 7, 2428–2433 (2006).Google Scholar
  52. 52.
    G. J. Molderings, J. Likungu, and M. Gothert, “Presynaptic cannabinoid and imidazoline receptors in the human heart and their potential relationship,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 360, No. 2, 157–164 (1999).Google Scholar
  53. 53.
    S. Munro, K. L. Thomas, and M. Abu-Shaar, “Molecular characterization of a peripheral receptor for cannabinoids,” Nature, 365, No. 6441, 61–65 (1993).Google Scholar
  54. 54.
    N. Niederhoffer and B. Szabo, “Cannabinoids cause central sympathoexcitation and bradycardia in rabbits,” J. Pharmacol. Exp. Ther., 294, No. 2, 707–713 (2000).Google Scholar
  55. 55.
    E. S. Onaivi, H. Ishiguro, J. P. Gong, et al., “Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain,” Ann. N. Y. Acad. Sci., 1074, 514–536 (2006).Google Scholar
  56. 56.
    S. E. O’Sullivan, “Endocannabinoids and the cardiovascular system in health and disease,” in: Endocannabinoids, R. G. Pertwee (ed.), Handb. Exp. Pharmacol., 231, 393–422 (2015).Google Scholar
  57. 57.
    P. Pacher, S. Batkai, and G. Kunos, “Haemodynamic profile and responsiveness to anandamide of TRPV1 receptor knock-out mice,” J. Physiol., 558, No. 2, 647–657 (2004).Google Scholar
  58. 58.
    M. Perez-Reyes, M. C. Timmons, M. A. Lipton, et al., “Intravenous injection in man of Δ9-tetrahydrocannabinol and 11-OH-Δ9-tetrahydrocannabinol,” Science, 177, No. 4, 633–635 (1972).Google Scholar
  59. 59.
    M. Perez-Riyes, M. C. Timmons, K. H. Davis, and E. M. Wall, “A comparison of the pharmacological activity in man of intravenously administered Δ9-tetrahydrocannabinol, cannabinol, and cannabidiol,” Experientia, 29, No. 11, 1368–1369 (1973).Google Scholar
  60. 60.
    R. G. Pertwee, “Endocannabinoids and their pharmacological actions,” in: Endocannabinoids, R. G. Pertwee (ed.), Handb. Exp. Pharmacol., 231, 1–37 (2015).Google Scholar
  61. 61.
    R. G. Pertwee, “Pharmacology of cannabinoid receptor ligands,” Curr. Med. Chem., 6, No. 8, 635–664 (1999).Google Scholar
  62. 62.
    W. O. Rohof, E. Aronica, H. Beaumont, et al., “Localization of mGluR5, GABAB, GABAA, and cannabinoid receptors on the vago-vagal reflex pathway responsible for transient lower esophageal sphincter relaxation in humans: an immunohistochemical study,” Neurogastroenterol. Motil., 24, No. 4, 383–173 (2012).Google Scholar
  63. 63.
    R. Rudz, E. Schlicker, U. Baranowska, et al., “Acute myocardial infarction inhibits the neurogenic tachycardic and vasopressor response in rats via presynaptic cannabinoid type 1 receptor,” J. Pharmacol. Exp. Ther., 343, No. 1, 198–205 (2012).Google Scholar
  64. 64.
    E. Ryberg, N. Larsson, S. Sjögren, et al., “The orphan receptor GPR55 is a novel cannabinoid receptor,” Br. J. Pharmacol., 152, No. 7, 1092–1101 (2007).Google Scholar
  65. 65.
    M. Sawzdargo, T. Nguyen, D. K. Lee, et al., “Identifi cation and cloning of three novel human G protein-coupled receptor genes GPR52, GPR53 and GPR55: GPR55 is extensively expressed in human brain,” Brain Res. Mol. Brain Res., 64, No. 2, 193–198 (1999).Google Scholar
  66. 66.
    C. L. Schaich, M. Grabenauer, B. F. Thomas, et al., “Medullary endocannabinoids contribute to the differential resting baroreflex sensitivity in rats with altered brain renin-angiotensin system expression,” Front. Physiol., 7, 207 (2016).Google Scholar
  67. 67.
    J. L. Seagard, C. Dean, S. Patel, et al., “AEA content and interaction of endocannabinoid/GABA modulatory effects in the NTS on baroreflex-evoked sympathoinhibition,” Am. J. Physiol. Heart Circ. Physiol., 286, No. 3, 992–1000 (2004).Google Scholar
  68. 68.
    Y. A. Shmist, I. Goncharov, M. Eichler, et al., “Delta-9-tetrahydrocannabinol protects cardiac cells from hypoxia via CB2 receptor activation and nitric oxide production,” Mol. Cell. Biochem., 283, No. 1–2, 75–83 (2006).Google Scholar
  69. 69.
    C. P. Stanley, W. H. Hind, C. Tufarelli, and S. E. O’Sullivan, “Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation,” Cardiovasc. Res., 107, No. 4, 568–578 (2015).Google Scholar
  70. 70.
    P. Stark and P. B. Dews, “Cannabinoids. II. Cardiovascular effects,” J. Pharmacol. Exp. Ther., 214, No. 1, 131–138 (1980).Google Scholar
  71. 71.
    B. Szabo, U. Nordheim, and N. Niederhoffer, “Effects of cannabinoids on sympathetic and parasympathetic neuroeffector transmission in the rabbit heart,” J. Pharmacol. Exp. Ther., 297, No. 2, 819–826 (2001).Google Scholar
  72. 72.
    M. Toczek, E. Schlicker, E. Grzeda, and B. Malinowska, “Enhanced function of inhibitory presynaptic cannabinoid CB1 receptors on sympathetic nerves of DOCA-salt hypertensive rats,” Life Sci., 138, 78–85 (2015).Google Scholar
  73. 73.
    R. F. Tuma, and S. Steffens, “Targeting the endocannabinoid system to limit myocardial and cerebral ischemic and reperfusion injury,” Curr. Pharm. Biotechnol., 13, No. 1, 46–58 (2012).Google Scholar
  74. 74.
    K. Varga, J. A. Wagner, D. T. Bridgen, and G. Kunos, “Platelet-and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension,” FASEB J., 12, No. 11, 1035–1044 (1998).Google Scholar
  75. 75.
    H. Vidrio, M. A. Sanchez-Salvatori, and M. Medina, “Cardiovascular effects of (–)-11-OH-Δ8-tetrahydrocannabinol-dimethylheptyl in rats,” J. Cardiovascular. Pharmacol., 28, No. 2, 332–336 (1996).Google Scholar
  76. 76.
    J. A. Vivan, S. Kishioka, E. R. Butelman, et al., “Analgesic, respiratory and heart rate effects of cannabinoid and opioid agonists in rhesus monkeys: antagonist effects of SR141716A,” J. Pharmacol. Exp. Ther., 286, No. 2, 697–703 (1998).Google Scholar
  77. 77.
    R. R. Vollmer, I. Cavero, R. J. Ertel, et al., “Role of central autonomic nervous system in the hypotension and bradycardia induced by (–)-Δ9-trans-tetrahydrocannabinol,” J. Pharm. Pharmacol., 26, No. 3, 186–192 (1974).Google Scholar
  78. 78.
    J. A. Wagner, K. Hu, J. Bauersachs, et al., “Endogenous cannabinoids mediate hypotension after experimental myocardial infarction,” J. Am. Coll. Cardiol., 38, No. 7, 2048–2054 (2001).Google Scholar
  79. 79.
    J. A. Wagner, K. Hu, J. Karcher, et al., “CB1 cannabinoid receptor antagonism promotes remodeling and cannabinoid treatment prevents endothelial dysfunction and hypotension in rats with myocardial infarction,” Br. J. Pharmacol., 138, No. 7, 1251–1258 (2003).Google Scholar
  80. 80.
    J. A. Wagner, M. Abesser, J. Harvey-White, and G. Ertl, “2-Arachidonylglycerol acting on CB1 cannabinoid receptors mediates delayed cardioprotection induced by nitric oxide in rat isolated hearts,” J. Cardiovasc. Pharmacol., 47, No. 5, 650–655 (2006).Google Scholar
  81. 81.
    P. F. Wang, L. S. Jiang, J. Bu, et al., “Cannabinoid-2 receptor activation protects against infarct and ischemia/reperfusion heart injury,” J. Cardiovasc. Pharmacol., 59, No. 4, 301–307 (2012).Google Scholar
  82. 82.
    T. Wang, G. Q. Li, H. P. Zhang, et al., “Overactivation of cannabinoid receptor type 1 in rostral ventrolateral medulla promotes cardiovascular responses in spontaneously hypertensive rats,” J. Hypertens., 35, No. 3, 538–545 (2017).Google Scholar
  83. 83.
    F. Weis, A. Beiras-Fernandez, R. Sodian, et al., “Substantially altered expression pattern of cannabinoid receptor 2 and activated endocannabinoid system in patients with severe heart failure,” J. Mol. Cell. Cardiol., 8, No. 6, 1187–1193 (2010).Google Scholar
  84. 84.
    K. Weller, P. W. Reeh, and S. K. Sauer, “TRPV1, TRPA1, and CB1 in the isolated vagus nerve-axonal chemosensitivity and control of neuropeptide release,” Neuropeptides, 45, No. 6, 391–400 (2011).Google Scholar
  85. 85.
    C. M. Yeh, T. Ruan, Y. J. Lin, and T. H. Hsu, “Activation of cannabinoid CB1 receptors suppresses the ROS-induced hypersensitivity of rat vagal lung C-fiber afferents,” Pulm. Pharmacol. Ther., 40, 22–29 (2016).Google Scholar
  86. 86.
    L. Zuurman, P. C. Passier, M. de Kam, et al., “Pharmacodynamic and pharmacokinetic effects of the intravenously administered CB1-receptor agonist Org 28611 in healthy male volunteers,” J. Psychopharmacology, 23, No. 6, 633–644 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Krylatov
    • 1
  • L. N. Maslov
    • 1
    Email author
  • I. F. Nam
    • 2
  • Yu. V. Bushov
    • 3
  1. 1.Research Institute of Cardiology, Tomsk National Medical Research Center, Russian Academy of SciencesTomskRussia
  2. 2.Tomsk National Polytechnic Research UniversityTomskRussia
  3. 3.Tomsk National State Research UniversityTomskRussia

Personalised recommendations