Neuroscience and Behavioral Physiology

, Volume 49, Issue 3, pp 323–330 | Cite as

Cold Adaptation as a Means of Increasing Antioxidant Protection

  • M. M. SaltykovaEmail author

We present here a review of the literature analyzing the link between the physiological mechanisms of cold adaptation and cold-induced prooxidant and compensatory antioxidant processes. Cold adaptation has been shown to increase the number and activity of mitochondria to support increases in ATP consumption; this leads to increased generation of reactive oxygen species (ROS), as mitochondria are among the main sources of ROS in physiological conditions. Studies in recent decades have shown that protein PGC-1α – one of the main regulators of mitochondrial biogenesis – also affects the synthesis of antioxidant enzymes, thus controlling the mitochondrial generation of reactive oxygen species. At the whole-body level, systematic cold stimulates intrinsic protective resources by enhancing oxidative processes, which in turn initiates activation of the antioxidant systems and increases the overall resistance of the body to stress factors of different types.


cold adaptation reactive oxygen species antioxidant system nonspecific resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ya. Akhalaya, A. G. Platonov, and A. A. Baizhumanov, “Transient cooling increases antioxidant status and general resistance in animals,” Byull. Eksperim. Biol. Med., 141, No. 1, 31–34 (2006).Google Scholar
  2. 2.
    A. K. Akhremenko, A. I. Anufriev, N. G. Solomonov, et al., “Hibernation at subzero temperatures,” Sib. Ekol. Zh., 3–4, 347–352 (1998).Google Scholar
  3. 3.
    N. A. Barabash, “Periodic exposure to cold and the resistance of the body,” Usp. Fiziol. Nauk., 27, No. 4, 116–132 (1996).Google Scholar
  4. 4.
    N. A. Barabash and G. Ya. Dvurechenskaya, Adaptation to Cold, Nauka, Moscow (1986).Google Scholar
  5. 5.
    G. P. Belousova, “Oxidative metabolism in rat skeletal muscle mitochondria on cold adaptation,” Tsitologiya, 25, No. 1, 72–76 (1983).Google Scholar
  6. 6.
    L. Kh. Garkavi and E. B. Kvakina, “The concept of health from the point of view of the theory of nonspecific adaptive body reactions,” Valeologiya, 2, 15–20 (1996).Google Scholar
  7. 7.
    A. V. Gordeeva, R. A. Zvyagil’skaya, and Yu. A. Labas, “Interaction between reactive oxygen species and calcium in living cells,” Biokhimiya, 68, No. 10, 1318–1322 (2003).Google Scholar
  8. 8.
    K. P. Ivanov, Basic Energetics of Organisms: Theoretical and Practical Aspects, Vol. 1, General Energetics, Heat Metabolism, and Thermoregulation, Nauka, Leningrad (1990).Google Scholar
  9. 9.
    E. V. Kalinina, N. N. Chernov, and M. D. Novichkova, “The role of glutathione, glutathione transferase, and glutathione reductase in controlling redox-dependent processes,” Usp. Biol. Khim., 54, 299–348 (2014).Google Scholar
  10. 10.
    N. I. Kolabukhov, Hibernation in Mammals, Nauka, Moscow (1985).Google Scholar
  11. 11.
    N. G. Kolosova, A. R. Kolpakov, and L. E. Panin, “Tocopherol contents and lipid peroxidation in Wistar rat tissues during adaptation to cold,” Vopr. Med. Khim., 41, No. 6, 16–19 (1995).Google Scholar
  12. 12.
    A. R. Kolpakov, A. A. Rozumenko, and L. E. Panin, “Polar medicine: results, challenges, and perspectives,” Vestn. Ur. Med. Akadem. Nauki, 2, 56–59 (2014).Google Scholar
  13. 13.
    A. R. Kolpakov, P. E. Vloshchinskii, and N. G. Kolosova, “Mechanisms of cold adaptation in humans and animals,” Vestn. Ross. Akad. Med. Nauk, 8, 29–31 (1993).Google Scholar
  14. 14.
    V. I. Kulinskii and L. S. Kolesnichenko, “The glutathione system. 1. Synthesis and transport of glutathione transferase and glutathione peroxidase,” Biomed. Khim., 55, No. 3, 255–277 (2009).Google Scholar
  15. 15.
    F. Z. Meerson, Adaptive Medicine. The Concept of Long-Term Adaptation, Delo, Moscow (1993).Google Scholar
  16. 16.
    E. B. Men’shchikova, V. Z. Lankin, N. K. Zenkov, et al., “Oxidative stress,” in: Prooxidants and Antioxidants, Slovo, Moscow (2006).Google Scholar
  17. 17.
    Yu. F. Pastukhov, A. L. Maksimov, and V. V. Khaskin, Cold Adaptation and Subarctic Conditions: Challenges in Thermophysiology, North-Eastern Science Center, Far East Branch, Russian Academy of Sciences, Magadan (2003), Vol. 1.Google Scholar
  18. 18.
    T. G. Sazontova and Yu. V. Arkhipenko, “The importance of the balance of prooxidants and antioxidants – equally important participants in metabolism,” Patol. Fiziol. Eksperim. Ter., 3, 2–18 (2007).Google Scholar
  19. 19.
    T. G. Sazontova, O. S. Glazachev, A. V. Bolotova, et al., “Adaptation to hypoxia and hyperoxia increases physical endurance: the role of reactive oxygen species and redox signaling,” Ros. Fiziol. Zh., 98, No. 6, 793–807 (2012).Google Scholar
  20. 20.
    M. M. Saltykova, I. V. Kuz’min, and O. A. Zhuravleva, “the effects of transient cooling in an air cryosauna at –70°C on body temperature and the lipid profile in healthy people,” Aviakosmich. Ekolog. Med., 2, 42–46 (2016).Google Scholar
  21. 21.
    M. O. Samoilov and E. A. Rybnikova, “Molecular-cellular and hormonal mechanisms of induced tolerance in the brain to extreme environmental factors,” Ros. Fiziol. Zh., 98, No. 1, 108–126 (2012).Google Scholar
  22. 22.
    V. N. Titov and S. G. Osipov, Atherosclerosis: the Role of Endogenous Inflammation, Acute Phase Proteins, and Fatty Acids, 21st Century Clinic, Moscow (2004).Google Scholar
  23. 23.
    V. A. Tkachuk, P. A. Tyurin-Kuz’min, V. V. Belousov, and A. V. Vorotnikov, “Hydrogen peroxide as a new second messenger,” Biol. Membr., 29, No. 1, 21–37 (2012).Google Scholar
  24. 24.
    V. V. Khaskin, Energetics of Heat Formation and Cold Adaptation, Nauka Siberia, Novosibirsk (1975).Google Scholar
  25. 25.
    I. G. Shabalina, A. R. Kolpakov, V. N. Solov’ev, et al., “The energy state of the rat liver during cold adaptation,” Biokhimiya, 60, No. 3, 441–449 (1995).Google Scholar
  26. 26.
    G. N. Shilov and V. A. Ivanyutin, “The antioxidant activity of catecholamines as a component the stress effect,” Obz. Klin. Farmakol. Lek. Ter., 12, No. 2, 43–46 (2014).Google Scholar
  27. 27.
    K. Aquilano, S. Baldelli, B. Pagliei, et al., “p53 orchestrates the PGC-1α-mediated antioxidant. Response upon mild redox and metabolic imbalance,” Antioxid. Redox Signal., 18, No. 4, 386–399 (2013).Google Scholar
  28. 28.
    N. C. Bal, S. K. Maurya, D. H. Sopariwala, et al., “Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals,” Nat. Med., 18, No. 10, 1575–1580 (2012).Google Scholar
  29. 29.
    G. Banfi , G. Lombardi, A. Colombini, and G. Melegati, “Whole-body cryotherapy in athletes,” Sports Med., 10, No. 6, 509–517 (2010).Google Scholar
  30. 30.
    G. Banfi , G. Melegati, A. Barassi, et al., “Effects of whole-body cryotherapy on serum mediators of inflammation and serum muscle enzymes in athletes,” J. Therm. Biol., 34, 55–59 (2009).Google Scholar
  31. 31.
    J. C. Barlow and E. A. Sellers, “Effect of exposure to cold on response of the rat to whole body radiation,” Am. J. Physiol., 172, No. 1, 147–151 (1953).Google Scholar
  32. 32.
    C. Borras, J. Sastre, D. Garcia-Sala, et al., “Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males,” Free Radic. Biol. Med., 34, 546–552 (2003).Google Scholar
  33. 33.
    J. D. Bruton, J. Aydin, T. Yamada, et al., “Increased fatigue resistance linked to Ca2+-stimulated mitochondrial biogenesis in muscle fibres of cold-acclimated mice,” J. Physiol., 588, Pt. 21, 4275–4288 (2010).Google Scholar
  34. 34.
    E. Cadenas and K. J. Davies, “Mitochondrial free radical generation, oxidative stress and aging,” Free Radic. Biol. Med., 29, 222–230 (2000).Google Scholar
  35. 35.
    R. J. Clarke, M. Catauro, H. H. Rasmussen, and H.-J. Apell, “Quantitative calculation of the role of the Na+, K+-ATPase in thermogenesis,” Biochem. Biophys. Acta, 1827, 1205–1212 (2013).Google Scholar
  36. 36.
    M. F. Czyzyk-Krzeska, “Molecular aspects of oxygen sensing in physiological adaptation to hypoxia,” Respir. Physiol., 110, No. 2–3, 99–111 (1997).Google Scholar
  37. 37.
    K. J. A. Davies, “Intracellular proteolytic systems may function as a secondary antioxidant defences: an hypothesis,” Free Rad. Biol. Med., 2, 155–173 (1986).Google Scholar
  38. 38.
    R. S. Dos Santos, A. Galina, and W. S. Da-Silva, “Cold acclimation increases mitochondrial oxidative capacity without inducing mitochondrial uncoupling in goldfish white skeletal muscle,” Biol. Open, 2, No. 1, 82–87 (2013).Google Scholar
  39. 39.
    B. Dugue, J. Smolander, T. Westerlund, et al., “Acute and long-term effects of winter swimming and whole-body cryotherapy on plasma antioxidative capacity in healthy women,” Scand. J. Clin. Lab. Invest., 65, No. 5, 395–402 (2005).Google Scholar
  40. 40.
    B. Fonda and N. Sarabon, “Effects of whole-body cryotherapy on recovery after hamstring damaging exercise: A crossover study,” Scand. J. Med. Sci. Sports, 23, 270–278 (2013).Google Scholar
  41. 41.
    M. J. Fregly “Adaptations: some general characteristics,” in: Handbook of Physiology. Section 4. Environmental Physiology, M. J. Fregly and C. M. Blatteins (eds.), Oxford University Press, New York (1996), Vol. 1, pp. 3–15.Google Scholar
  42. 42.
    R. Ghys, “Radioprotection by acclimatization to cold,” Nature, 198, 603 (1963).Google Scholar
  43. 43.
    A. Gorlach, K. Bertram, S. Hudecova, and O. Krizanova, “Calcium and ROS: A mutual interplay,” Redox Biol., 6, 260–271 (2015).Google Scholar
  44. 44.
    C. Handschin and B. M. Spiegelman, “The role of exercise and PGC-1α in inflammation and chronic disease,” Nature, 454, 463–469 (2008).Google Scholar
  45. 45.
    M. E. Harper and E. L. Seifert, “Thyroid hormone effects on mitochondrial energetics,” Thyroid, 18, No. 2, 145–156 (2008).Google Scholar
  46. 46.
    C. Hausswirth, K. Schaal, Y. Le Meur, et al., “Parasympathetic activity and blood catecholamine responses following a single partial-body cryostimulation and a whole-body cryostimulation,” PLoS One, 8, No. 8, e72658 (2013).Google Scholar
  47. 47.
    L. Jansky, “Participation of body organs during non-shivering heat production,” in: Symposium on Non-shivering Thermogenesis, L. Jansky (ed.), Academia, Prague (1971), pp. 159–172.Google Scholar
  48. 48.
    L. L. Ji, “Antioxidant signaling in skeletal muscle: a brief review,” Exp. Gerontol., 42, No. 7, 582–593 (2007).Google Scholar
  49. 49.
    D. P. Jones, “Redefining oxidative stress,” Antioxid. Redox Signal., 8, 1865–1879 (2006).Google Scholar
  50. 50.
    C. H. Joo, R. Allan, B. Drust, et al., “Passive and post-exercise cold-water immersion augments PGC-1α and VEGF expression in human skeletal muscle,” Eur. J. Appl. Physiol., 116, No. 11–12, 2315–2326 (2016).Google Scholar
  51. 51.
    K. Kitagawa, M. Matsumoto, M. Tagaya, et al., “’Ischemic tolerance’ phenomenon found in the brain,” Brain Res., 528, No. 1, 21–24 (1990).Google Scholar
  52. 52.
    A. T. Klimek, A. Lubkowska, Z. Szygula, et al., “Influence of the ten sessions of the whole body cryostimulation on aerobic and anaerobic capacity,” Int. J. Occup. Med. Environ. Health, 23, No. 2, 181–189 (2010).Google Scholar
  53. 53.
    H. H. Ku, U. T. Brunk, and R. S. Sohal, “Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species,” Free Radic. Biol. Med., 15, 621–627 (1993).Google Scholar
  54. 54.
    A. Lass and R. S. Sohal, “Effect of coenzyme Q10 and α-tocopherol content of mitochondria on the production of superoxide anion radicals,” FASEB J., 14, 87–94 (2000).Google Scholar
  55. 55.
    J. LeBlank and A. Labrie, “Glycogen and nonspecific adaptation to cold,” Appl. Physiol., 5, No. 6, 1428–1432 (1981).Google Scholar
  56. 56.
    J. Leppaluoto, T. Westerlund, P. Huttunen, et al., “Effects of long-term whole-body cold exposures on plasma concentrations of ACTH, beta-endorphin, cortisol, catecholamines and cytokines in healthy females,” Scand. J. Clin. Lab. Invest., 68, No. 2, 145–153 (2008).Google Scholar
  57. 57.
    H. Levan, R. E. Haas, S. Stefani, and E. Reyes, “Radiosensitivity of mice exposed to various temperatures and low-dose rate radiation,” Am. J. Physiol., 219, No. 4, 1033–1035 (1970).Google Scholar
  58. 58.
    J. Liu and A. Mori, “Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage,” Arch. Biochem. Biophys., 302, No. 1, 118–127 (1993).Google Scholar
  59. 59.
    M. Lopez Torres, R. Perez Campo, C. Rojas, et al., “Maximum life span in vertebrates: relationship with liver antioxidant enzymes, glutathione system, ascorbate, urate sensitivity to peroxidation, true malondialdehyde, in vivo H2O2 and basal and maximum aerobic capacity,” Mech. Aging Dev., 70, 177–179 (1993).Google Scholar
  60. 60.
    B. B. Lowell and B. M. Spiegelman, “Towards a molecular understanding of adaptive thermogenesis,” Nature, 404, No. 6778, 652–660 (2000).Google Scholar
  61. 61.
    A. Lubkowska, G. Banfi, B. Dolegowska, et al., “Changes in lipid profile in response to three different protocols of whole-body cryostimulation treatments,” Cryobiology, 61, 22–26 (2010).Google Scholar
  62. 62.
    A. Lubkowska, B. Dolegowska, Z. Szygula, and A. Klimek, “Activity of selected enzymes in erythrocytes and level of plasma antioxidants in response to single whole-body cryostimulation in humans,” Scand. J. Clin. Lab. Invest., 69, No. 3, 387–394 (2009).Google Scholar
  63. 63.
    A. Lubkowska, B. Dolegowska, and Z. Szygula, “Whole-body cryostimulation-potential beneficial treatment for improving antioxidant capacity in healthy men – significance of the number of sessions,” PLoS One, 7, No. 10, e46352 (2012).Google Scholar
  64. 64.
    A. Lubkowska, B. Dolegowska, Z. Szygula, et al., “Winter-swimming as a building-up body resistance factor inducing adaptive changes in the oxidant/antioxidant status,” Scand. J. Clin. Lab. Invest., 73, No. 4, 315–325 (2013).Google Scholar
  65. 65.
    H. C. Lunt, M. J. Barwood, J. Corbett, and M. J. Tipton, “‘Cross-adaptation’: habituation to short repeated cold-water immersions affects the response to acute hypoxia in humans,” J. Physiol., 588, Part 18, 3605–3613 (2010).Google Scholar
  66. 66.
    S. Mall, R. Broadbridge, S. L. Harrison, et al., “The presence of sarcolipin results in increased heat production by Ca2+ ATPase,” J. Biol. Chem., 281, No. 48, 36 597–36 602 (2006).Google Scholar
  67. 67.
    W. D. van Marken Lichtenbelt and P. Schrauwen, “Implications of nonshivering thermogenesis for energy balance regulation in humans,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 301, R285–R296 (2011).Google Scholar
  68. 68.
    C. Mila-Kierzenkowska, A. Wozniak, B. Wozniak, et al., “Whole-body cryostimulation in kayaker women: a study of the effect of cryogenic temperatures on oxidative stress after the exercise,” J. Sports Med. Phys. Fitness, 49, No. 2, 201–207 (2009).Google Scholar
  69. 69.
    E. Miller, L. Markiewicz, J. Saluk, and I. Majsterek, “Effect of short-term cryostimulation on antioxidative status and its clinical applications in humans,” Eur. J. Appl. Physiol., 112, No. 5, 1645–1652 (2012).Google Scholar
  70. 70.
    O. Muzik, T. J. Mangner, W. R. Leonard, et al., “15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat,” J. Nucl. Med., 54, 523–531 (2013).Google Scholar
  71. 71.
    H. Pournot, F. Bieuzen, J. Louis, et al., “Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise,” PLoS One, 6, No. 7, e22748 (2011).Google Scholar
  72. 72.
    S. K. Powers, L. L. Ji, and C. Leeuwenburgh, “Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review,” Med. Sci. Sports Exerc., 31, No. 7, 987–997 (1999).Google Scholar
  73. 73.
    P. Puigserver, Z. Wu, C. W. Park, et al., “A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis,” Cell, 92, No. 6, 829–839 (1998).Google Scholar
  74. 74.
    G. Pujari, A. Berni, F. Palitti, and A. Chatterjee, “Influence of glutathione levels on radiation-induced chromosomal DNA damage and repair in human peripheral lymphocytes,” Mutation Res., 675, 23–28 (2009).Google Scholar
  75. 75.
    Z. Radak, Z. Zhao, E. Koltai, et al., “Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling,” Antioxid. Redox Signal, 18, No. 10, 1208–1246 (2013).Google Scholar
  76. 76.
    T. Sato, E. Imura, A. Murata, and N. Igarashi, “Thyroid hormone-catecholamine interrelationship during cold acclimation in rats. Compen satory role of catecholamine for altered thyroid states,” Acta Endocrinol. (Copenh.), 113, No. 4, 536–542 (1986).Google Scholar
  77. 77.
    P. J. Schaeffer, J. J. Villarin, and S. L. Lindstedt, “Chronic cold exposure increases skeletal muscle oxidative structure and function in Monodelphis domestica, a marsupial lacking brown adipose tissue,” Physiol. Biochem. Zool., 76, No. 6, 877–887 (2003).Google Scholar
  78. 78.
    W. G. Siems, R. Brenke, O. Sommerburg, and T. Grune, “Improved antioxidative protection in winter swimmers,” QJM, 92, No. 4, 193–198 (1999).Google Scholar
  79. 79.
    W. G. Siems, F. J. van Kuijk, R. Maass, and R. Brenke, “Uric acid and glutathione levels during short-term whole body cold exposure,” Free Radic. Biol. Med., 16, No. 3, 299–305 (1994).Google Scholar
  80. 80.
    J. E. Silva, “The thermogenic effect of thyroid hormone and its clinical implications,” Ann. Intern. Med., 139, No. 3, 205–213 (2003).Google Scholar
  81. 81.
    D. J. Smith, P. A. Deuster, C. J. Ryan, and T. J. Doubt, “Prolonged whole body immersion in cold water: hormonal and metabolic changes,” Undersea Biomed. Res., 17, 139–147 (1990).Google Scholar
  82. 82.
    W. S. Smith, R. Broadbridge, J. M. East, and A. G. Lee, “Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum LEE1,” Biochem. J., 361, Pt. 2, 277–286 (2002).Google Scholar
  83. 83.
    E. Sofic, N. Denisova, K. Youdim, et al., “Antioxidant and pro-oxidant capacity of catecholamines and related compounds. Effects of hydrogen peroxide on glutathione and sphingomyelinase activity in pheochromocytoma PC12 cells: potential relevance to age-related diseases,” J. Neural Transm. (Vienna), 108, No. 5, 541–557 (2001).Google Scholar
  84. 84.
    M. B. Spasic, Z. S. Saicic, B. Buzadzic, et al., “Effect of long-term exposure to cold on the antioxidant defense system in the rat,” Free Radic. Biol. Med., 15, No. 3, 291–299 (1993).Google Scholar
  85. 85.
    P. Sramek, M. Simeckova, L. Jansky, et al., “Human physiological responses to immersion into water of different temperatures,” Eur. J. Appl. Physiol., 81, 436–442 (2000).Google Scholar
  86. 86.
    P. Steinbacher and P. Eckl, “Impact of oxidative stress on exercising skeletal muscle,” Biomolecules, 5, No. 2, 356–377 (2015).Google Scholar
  87. 87.
    D. F. Stowe, and A. K. Camara, “Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function,” Antioxid. Redox Signal, 11, 1373–1414 (2009).Google Scholar
  88. 88.
    J. St-Pierre, J. A. Buckingham, S. J. Roebuck, and M. D. Brand, “Topology of superoxide production from different sites in the mitochondrial electron transport chain,” J. Biol. Chem., 277, 44 784–44 790 (2002).Google Scholar
  89. 89.
    R. H. Straub, G. Pongratz, H. Hirvonen, et al., “Acute cold stress in rheumatoid arthritis inadequately activates stress responses and induces an increase of interleukin-6,” Ann. Rheum. Dis., 68, 572–578 (2009).Google Scholar
  90. 90.
    J. H. Suh, S. H. Heath, and T. M. Hagen, “Two subpopulations of mitochondria in the aging rat heart display heterogenous levels of oxidative stress,” Free Radic. Biol. Med., 35, 1064–1072 (2003).Google Scholar
  91. 91.
    I. Valle, A. Alvarez-Barrientos, E. Arza, et al., “PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells,” Cardiovasc. Res., 66, 562–573 (2005).Google Scholar
  92. 92.
    J. Vina, J. Sastre, F. Pallardo, and C. Borras, “Mitochondrial theory of aging: importance to explain why females live longer than males,” Antioxid. Redox Signal, 5, No. 5, 549–556 (2003).Google Scholar
  93. 93.
    G. E. White and G. D. Wells, “Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise,” Extreme Physiol. Med., 2, No. 1, 26 (2013).Google Scholar
  94. 94.
    S. L. J. Wijers, W. H. M. Saris, and W. D. van Marken Lichtenbelt, “Recent advances in adaptive thermogenesis: potential implications for the treatment of obesity,” Obesity Reviews, 10, 218–226 (2009).Google Scholar
  95. 95.
    E. Wojtecka-Lukasik, K. Ksiezopolska-Orlowska, E. Gaszewska, et al., “Cryotherapy decrease histamine levels in the blood of patients with rheumatoid arthritis,” Inflamm. Res., 59, Suppl. 2, S253–S255 (2010).Google Scholar
  96. 96.
    A. Wozniak, B. Wozniak, G. Drewa, and C. Mila-Kierzenkowska, “The effect of whole-body cryostimulation on the prooxidant-antioxidant balance in blood of elite kayakers after training,” Eur. J. Appl. Physiol., 101, No. 5, 533–537 (2007).Google Scholar
  97. 97.
    T. Yamauchi, S. Nogami, and K. Miura, “Various applications of the extreme cryotherapy and strenuous exercise program focusing on rheumatoid arthritis,” Physiother. Rehabil., 26, No. 5, 89–101 (1981).Google Scholar
  98. 98.
    Y. Yan, C. L. Wei, W. R. Zhang, et al., “Cross-talk between calcium and reactive oxygen species signaling,” Acta Pharmacol. Sin., 27, No. 7, 821–826 (2006).Google Scholar
  99. 99.
    G. C. Yen and C. L. Hsieh, “Antioxidant effects of dopamine and related compounds,” Biosci. Biotechnol. Biochem., 61, No. 10, 1646–1649 (1997).Google Scholar
  100. 100.
    B. P. Yu, “Cellular defenses against damage from reactive oxygen species,” Physiol. Rev., 74, 139–162 (1994).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Medical-Biological ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations