Photopharmacology: A Brief Review Using the Control of Potassium Channels as an Example

  • P. D. BregestovskiEmail author
  • G. V. Maleeva

Photopharmacology is an area based on the creation of chemical compounds able to control the functioning of biological molecules using light. Photochromic compounds which activate or inhibit the activity of key cellular proteins, particularly ion channels, depending on the wavelength of the light, are powerful tools for noninvasive control of neural networks and, thus, for controlling the organs and behavior of animals. Photochromic substances can be divided into two main classes: (a) soluble photochromic ligands and (b) compounds covalently binding to target proteins, or tethered photochromic ligands. Potassium channel blockers, modulators of glutamate and GABA receptors, and cationic TRP channels have been created on this basis. Photopharmacology opens up the potential for controlling pain, restoring the photosensitivity of the retina, and controlling other physiological functions. This minireview will briefly present the main principles of the organization and actions of light-controlled switches, along with a description of photochromic chemical compounds able to modulate the activity of voltage-gated ion channels, and present preliminary investigations on the creation of photopharmacological compounds for therapeutic use.


photopharmacology synthetic light-sensitive compounds voltage-gated channels photochromic ligands potassium channels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banghart, M. R., Mourot, A., Fortin, D. L., et al., “Photochromic blockers of voltage-gated potassium channels,” Angewandte Chemie Int. Ed. 48, 9097–9101 (2009).CrossRefGoogle Scholar
  2. Banghart, M., Borges, K., Isacoff, E., et al., “Light-activated ion channels for remote control of neuronal firing,” Nat. Neurosci., 7, 1381–1386 (2004).CrossRefGoogle Scholar
  3. Berg, J., Hung, Y. P., and Yellen, G., “A genetically encoded fluorescent reporter of ATP: ADP ratio,” Nat. Methods, 6, 161–6 (2009).CrossRefGoogle Scholar
  4. Bilan, D. S., Pase, L., Joosen, L., et al., “HyPer-3: a genetically encoded H2O2 probe with improved performance for ratiometric and fluorescence lifetime imaging,” ACS Chem. Biol., 8, 535–42 (2013).CrossRefGoogle Scholar
  5. Bregestovski, P. and Mukhtarov, M., “Optogenetics: perspectives in biomedical research (review),” Sovrem. Tekhnol. Med., 8, No. 4, 212–21 (2016).CrossRefGoogle Scholar
  6. Bregestovski, P. D., “Optogenetics in neurology: review of directions and perspectives,” in: Neurology in the 21st Century: Diagnostc, Therapeutic, and Research Techniques, Vol 3, Current Research Techniques in Experimental Neurology, M. A. Piradov et al. (eds.), ATMO, Moscow (2015), pp. 315–349.Google Scholar
  7. Bregestovski, P., “Architecture of receptor-operated ion channels of biological membranes,” Biophysics, 56, No. 1, 51–64 (2011).CrossRefGoogle Scholar
  8. Bregestovski, P., Waseem, T., and Mukhtarov, M., “Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity,” Front. Mol. Neurosci., 2, No. 15 (2009).Google Scholar
  9. Buckingham, S. D., Kidd, J. F., Law, R. J., et al., “Structure and function of two-pore-domain K+ channels: contributions from genetic model organisms,” Trends. Pharmacol. Sci., 26, No. 7, 361–367 (2005).CrossRefGoogle Scholar
  10. Busskamp, V., Duebel, J., Balya, D., et al., “Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa,” Science, 329, 413–417 (2010).CrossRefGoogle Scholar
  11. Chambers, J. J, Banghart, M. R., Trauner, D., and Kramer, R. H., “Light-induced depolarization of neurons using a modified Shaker K+ channel and a molecular photoswitch,” J. Neurophysiol., 96, No. 5, 2792–2796 (2006).CrossRefGoogle Scholar
  12. Choi, K. L., Mossman, C., Aubé, J., and Yellen, G., “The internal quaternary ammonium receptor site of Shaker potassium channels,” Neuron, 10, No. 3, 533–541 (1993).CrossRefGoogle Scholar
  13. Covington, H. E., Lobo, M. K., Maze, I., et al., “Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex,” J. Neurosci., 30, 16082–16090 (2010).CrossRefGoogle Scholar
  14. Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., et al., “The structure of the potassium channel: molecular basis of K+ conduction and selectivity,” Science, 280, 69–77 (1998).CrossRefGoogle Scholar
  15. Firsov, M. L., “Perspectives for the optogenetic prosthetization of the retina,” Zh. Vyssh. Nerv. Deyat., 67, No. 5 (2017).Google Scholar
  16. Fortin, D. L., Banghart, M. R., Dunn, T. W., et al., “Photochemical control of endogenous ion channels and cellular excitability,” Nat. Meth., 5, No. 4, 331–338 (2008).CrossRefGoogle Scholar
  17. Fortin, D. L., Dunn, T. W., and Kramer, R. H., “Engineering light-regulated ion channels,” Cold Spring Harb. Protoc., 2011, No. 6, 579–585 (2011).CrossRefGoogle Scholar
  18. Fritzsche, J., “Note sur les carbures d’hydrogène solides, tirés du gaudron de houille,” C.R. Acad. Sci., 69, 1035–1037 (1867).Google Scholar
  19. Gaub, B. M., Berry, M. H., Holt, A. E., et al., “Optogenetic vision restoration using rhodopsin for enhanced sensitivity,” Mol. Ther., 23, No. 10, 1562–1571 (2015).CrossRefGoogle Scholar
  20. Gorostiza, P., Arosio, D., and Bregestovski, P., “Molecular probes and switches for functional analysis of receptors, ion channels and synaptic networks,” Front. Mol. Neurosci., 6, 48 (2013).Google Scholar
  21. Harvey, A. J. and Abell, A. D., “α-Ketoester-based photobiological switches: synthesis, peptide chain extension and assay against α-chymotrypsin,” Bioorg. Med. Chem. Lett., 11, No. 18, 2441–2444 (2001).CrossRefGoogle Scholar
  22. Haubensak, W., Kunwar, P. S., Cai, H., et al., “Genetic dissection of an amygdala microcircuit that gates conditioned fear,” Nature, 468, 270–276 (2010).CrossRefGoogle Scholar
  23. Häusser, M., “Optogenetics: the age of light,” Nat. Methods, 11, 1012–1014 (2014).CrossRefGoogle Scholar
  24. Hirshberg, Y., “Photochromie dans la serie de la bianthrone,” C.R. Acad. Sci., 231, No. 18, 903–904 (1950).Google Scholar
  25. Imamura, H., Nhat, K. P. H., Togawa, H., et al., “Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators,” Proc. Natl. Acad. Sci. USA, 106, 15651–15656 (2009).CrossRefGoogle Scholar
  26. Janovjak, H., Szobota, S., Wyart, C., et al., “A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing,” Nat. Neurosci., 13, No. 8, 1027–1032 (2010).CrossRefGoogle Scholar
  27. Kokel, D., Cheung, C. Y. J., Mills, R., et al., “Photochemical activation of TRPA1 channels in neurons and animals,” Nat. Chem. Biol., 9, No. 4, 257–63 (2013).CrossRefGoogle Scholar
  28. Kramer, R. H., Mourot, A., and Adesnik, H., “Optogenetic pharmacology for control of native neuronal signaling proteins,” Nat. Neurosci., 16, 816–23 (2013).CrossRefGoogle Scholar
  29. Kuang, Q., Purhonen, P., and Hebert, H., “Structure of potassium channels,” Cell. Mol. Life Sci., 72, No. 19, 3677–3693 (2015).CrossRefGoogle Scholar
  30. Laprell, L., Hüll, K., Stawski, P., et al., “Restoring light sensitivity in blind retinae using a photochromic AMPA receptor agonist,” ACS Chem. Neurosci., 7, 15–20 (2015).CrossRefGoogle Scholar
  31. Lima, S. Q. and Miesenböck, G., “Remote control of behavior through genetically targeted photostimulation of neurons,” Cell, 121, No. 1, 141–152 (2005).CrossRefGoogle Scholar
  32. Macé, E., Caplette, R., Marre, O., et al., “Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice,” Mol. Ther., 23, 7–16 (2014).CrossRefGoogle Scholar
  33. MacKinnon, R. and Yellen, G., “Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels,” Science, 250, No. 4978, 276–279 (1990).CrossRefGoogle Scholar
  34. MacKinnon, R., “Potassium channels,” FEBS Lett., 555, No. 1, 62–65 (2003).CrossRefGoogle Scholar
  35. Miesenböck, G., “Optogenetic control of cells and circuits,” Annu. Rev. Cell Dev. Biol., 27, 731–58 (2011).CrossRefGoogle Scholar
  36. Mourot, A., Kienzler, M. A., Banghart, M. R., et al., “Tuning photochromic ion channel blockers,” ACS Chem. Neurosci., 2, No. 9, 536–43 (2011).CrossRefGoogle Scholar
  37. Polosukhina, A., Litt, J., Tochitsky, I., et al., “Photochemical restoration of visual responses in blind mice,” Neuron, 75, No. 2, 271–82 (2012).CrossRefGoogle Scholar
  38. Rossi, M. A., Calakos, N., and Yin, H. H., “Spotlight on movement disorders: what optogenetics has to offer,” Mov. Disord., 30, 624–631 (2015).CrossRefGoogle Scholar
  39. Sahel, J. A. and Roska, B., “Gene therapy for blindness,” Annu. Rev. Neurosci., 36, 467–488 (2013).CrossRefGoogle Scholar
  40. Sandoz, G. E. and Levitz, J., “Optogenetic techniques for the study of native potassium channels,” Front. Mol. Neurosci., 6, 6 (2013).Google Scholar
  41. Sandoz, G., Levitz, J., Kramer, R. H., and Isacoff, E. Y., “Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABA B signaling,” Neuron, 74, No. 6, 1005–1014 (2012).CrossRefGoogle Scholar
  42. Stawski, P., Sumser, M., and Trauner, D., “A photochromic agonist of AMPA receptors,” Angewandte Chemie International Edition, 51, 5748–5751 (2012).CrossRefGoogle Scholar
  43. Szobota, S., Gorostiza, P., Del Bene, F., et al., “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron, 54, No. 4, 535–545 (2007).CrossRefGoogle Scholar
  44. Tochitsky, I., Polosukhina, A., Degtyar, V. E., et al., “Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells,” Neuron, 81, No. 4, 800–813 (2014).CrossRefGoogle Scholar
  45. Tye, K. M. and Deisseroth, K., “Optogenetic investigation of neural circuits underlying brain disease in animal models,” Nat. Rev. Neurosci., 13, 251–66 (2012).CrossRefGoogle Scholar
  46. Velema, W. A., Szymanski, W., and Feringa, B. L., “Photopharmacology: beyond proof of principle,” J. Am. Chem. Soc., 136, 2178–2191 (2014).CrossRefGoogle Scholar
  47. Wagner, F. B., Truccolo, W., Wang, J., and Nurmikko, A. V., “Spatiotemporal dynamics of optogenetically induced and spontaneous seizure transitions in primary generalized epilepsy,” J. Neurophysiol., 113, No. 7, 2321–2341 (2015).CrossRefGoogle Scholar
  48. Wang, F., Bélanger, E., Paque, M. E., et al., “Probing pain pathways with light,” Neuroscience, 338, 248–271 (2016).CrossRefGoogle Scholar
  49. Williams, J. C. and Denison, T., “From optogenetic technologies to neuromodulation therapies,” Sci. Transl. Med., 5, No. 177 (2013).Google Scholar
  50. Yamamoto, K., Tanei, Z. I., Hashimoto, T., et al., “Chronic optogenetic activation augments Aβ pathology in a mouse model of Alzheimer disease,” Cell Rep., 11, No. 6, 859–865 (2015).CrossRefGoogle Scholar
  51. Yue, L., Pawlowski, M., Dellal, S. S., et al., “Robust photoregulation of GABA(A) receptors by allosteric modulation with a propofol analogue,” Nat. Commun., 3, 1095 (2012).Google Scholar
  52. Zhou, M., Morais-Cabral, J. H., Mann, S., and MacKinnon, R., “Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors,” Nature, 411, No. 6838, 657–661 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut de Neurosciences des Systèmes, Aix-Marseille, INSERM UMR1106MarseilleFrance
  2. 2.Kazan State Medical UniversityKazanRussia

Personalised recommendations