Advertisement

Three Families of Channelrhodopsins and Their Use in Optogenetics (review)

  • E. G. Govorunova
  • О. А. Sineshchekov
  • J. L. SpudichEmail author
Article
  • 5 Downloads

Channelrhodopsins are retinylidene proteins unique in their ability to generate light-gated passive ion currents across the membrane. Heterologous expression of channelrhodopsins in animal cells, most notably, neurons, enables precise millisecond-scale control of their activity (optogenetics). For 15 years only cation-conducting channelrhodopsins derived from chlorophyte (green) algae have been known, which now are widely used in neuroscience research to stimulate neurons with light. Recently a distinct family of channelrhodopsins with strictly anion selectivity has been discovered in phylogenetically distant cryptophyte flagellate algae. Furthermore, the genomes of the latter microorganisms also encode a structurally distinct group of rhodopsins capable of cation channel activity using different molecular mechanisms as compared to their chlorophyte counterparts. In this review, we mostly focus on the two latest additions and their utility for optogenetic applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfonsa H., Lakey J. H., Lightowlers R. N., and Trevelyan A. J., “Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons,” Nat. Commun., 7, 13495 (2016).CrossRefGoogle Scholar
  2. Andrasfalvy B. K., Zemelman B. V., Tang J., and Vaziri A., “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. USA, 107, 11981–11986 (2010).CrossRefGoogle Scholar
  3. Bamann C., Gueta R., Kleinlogel S., et al., “Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond,” Biochemistry, 49, 267–278 (2010).CrossRefGoogle Scholar
  4. Berndt A., Lee S. Y., Wietek J., et al., “Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity,” Proc. Natl. Acad. Sci. USA, 113, 822–829 (2016).CrossRefGoogle Scholar
  5. Berndt A., Yizhar O., Gunaydin L. A., et al., “Bi-stable neural state switches,” Nat. Neurosci., 12, 229–234 (2009).CrossRefGoogle Scholar
  6. Boyden E. S., “Optogenetics and the future of neuroscience,” Nat. Neurosci., 18, 1200–1201 (2015).CrossRefGoogle Scholar
  7. Boyden E. S., Zhang F., Bamberg E., et al., “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci., 8, 1263–1268 (2005).CrossRefGoogle Scholar
  8. Chow B. Y. and Boyden E. S., “Optogenetics and translational medicine,” Sci. Transl. Med., 5, 177ps175 (2013).Google Scholar
  9. Cohen A. E., “Optogenetics: Turning the microscope on its head,” Biophys. J., 110, 997–1003 (2016).CrossRefGoogle Scholar
  10. Deisseroth K., “Optogenetics: 10 years of microbial opsins in neuroscience,” Nat. Neurosci., 18, 1213–1225 (2015).CrossRefGoogle Scholar
  11. Deisseroth K., Feng G., Majewska A. K., et al., “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci., 26, 10380–10386 (2006).CrossRefGoogle Scholar
  12. Dolgikh D. A., Malyshev A. Yu., Roshchin M. V., et al., “Comparative characteristics of two anion-channel rhodopsins and prospects of their use in optogenetics,” Dokl. Biochem. Biophys., 471, 440–442 (2016).CrossRefGoogle Scholar
  13. Feldbauer K., Zimmermann D., Pintschovius V., et al., “Channelrhodopsin-2 is a leaky proton pump,” Proc. Natl. Acad. Sci. USA, 106, 12317–12322 (2009).CrossRefGoogle Scholar
  14. Foster K.-W., Saranak J., Patel N., et al., “A rhodopsin is the functional photoreceptor for phototaxis in the unicelullar eukaryote Chlamydomonas,” Nature, 311, 756–759 (1984).CrossRefGoogle Scholar
  15. Govorunova E. G., Cunha C. R., Sineshchekov O. A., and Spudich J. L. “Anion channelrhodopsins for inhibitory cardiac optogenetics,” Sci. Rep., 6, 33530 (2016).CrossRefGoogle Scholar
  16. Govorunova E. G., Sineshchekov O. A., Li H., et al., “Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis,” J. Biol. Chem., 288, 29911–29922 (2013).CrossRefGoogle Scholar
  17. Govorunova E. G., Sineshchekov O. A., Li H., and Spudich J. L. “Microbial rhodopsins: Diversity, mechanisms, and optogenetic applications,” Annu. Rev. Biochem. (2017а).Google Scholar
  18. Govorunova E. G., Sineshchekov O. A., Liu X., et al., “Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics,” Science, 349, 647–650 (2015).CrossRefGoogle Scholar
  19. Govorunova E. G., Sineshchekov O. A., Rodarte E. M., et al., “The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity,” Sci. Rep., 7, 43358 (2017b).Google Scholar
  20. Govorunova E. G., Sineshchekov O. A., and Spudich J. L. “Structurally distinct cation channelrhodopsins from cryptophyte algae,” Biophys. J., 110, 2302–2304 (2016a).CrossRefGoogle Scholar
  21. Hou S. Y., Govorunova E. G., Ntefidou M., et al., “Diversity of Chlamydomonas channelrhodopsins,” Photochem. Photobiol., 88, 119–128 (2012).CrossRefGoogle Scholar
  22. Kato H. E., Kamiya M., Sugo S., et al., “Atomistic design of microbial opsin-based blue-shifted optogenetics tools,” Nat. Commun., 6, 7177 (2015).Google Scholar
  23. Kato H. E., Zhang F., Yizhar O., et al., “Crystal structure of the channelrhodopsin light-gated cation channel,” Nature, 482, 369–374 (2012).CrossRefGoogle Scholar
  24. Keeling P. J., Burki F., Wilcox H. M., et al., “The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing,” PLoS Biol., 12, e1001889 (2014).CrossRefGoogle Scholar
  25. Klapoetke N. C., Murata Y., Kim S. S., et al., “Independent optical excitation of distinct neural populations,” Nat. Methods, 11, 338–346 (2014).CrossRefGoogle Scholar
  26. Klapper S. D., Swiersy A., Bamberg E., and Busskamp V., “Biophysical properties of optogenetic tools and their application for vision restoration approaches,” Front. Syst. Neurosci., 10, 74 (2016).Google Scholar
  27. Kleinlogel S., Feldbauer K., Dempski R. E., et al., “Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh,” Nat. Neurosci., 14, 513–518 (2011).CrossRefGoogle Scholar
  28. Lewis T. L., Jr., Mao T., Svoboda K., and Arnold D. B., “Myosin-dependent targeting of transmembrane proteins to neuronal dendrites,” Nat. Neurosci., 12, 568–576 (2009).CrossRefGoogle Scholar
  29. Li X., Gutierrez D. V., Hanson M. G., et al., “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. USA, 102, 17816–17821 (2005).CrossRefGoogle Scholar
  30. Lin J. Y., Knutsen P. M., Muller A., et al., “ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation,” Nat. Neurosci., 16, 1499–1508 (2013).CrossRefGoogle Scholar
  31. Lin J. Y., Lin M. Z., Steinbach P., and Tsien R. Y., “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J., 96, 1803–1814 (2009).CrossRefGoogle Scholar
  32. Litvin F. F., Sineshchekov O. A., and Sineshchekov V. A., “Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis,” Nature, 271, 476–478 (1978).CrossRefGoogle Scholar
  33. Lorenz-Fonfria V. A. and Heberle J., “Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel,” Biochim. Biophys. Acta, 1837, 626–642 (2014).CrossRefGoogle Scholar
  34. Lorenz-Fonfria V. A., Resler T., Krause N., et al., “Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating,” Proc. Natl. Acad. Sci. USA, 110, E1273–1281 (2013).CrossRefGoogle Scholar
  35. Lorincz M. L. and Adamantidis A. R., “Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics,” Prog. Neurobiol., 151, 237–253 (2017).CrossRefGoogle Scholar
  36. Mahn M., Prigge M., Ron S., et al., “Biophysical constraints of optogenetic inhibition at presynaptic terminals,” Nat. Neurosci., 19, 554–556 (2016).CrossRefGoogle Scholar
  37. Malyshev A. Y., Roshchin M. V., Smirnova G. R., et al., “Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light,” Neurosci. Lett., 640, 76–80 (2017).CrossRefGoogle Scholar
  38. Matasci N., Hung L. H., Yan Z., et al., “Data access for the 1,000 Plants (1KP) project,” Gigascience, 3, 17 (2014).CrossRefGoogle Scholar
  39. Mohammad F., Stewart J. C., Ott S., et al., “Optogenetic inhibition of behavior with anion channelrhodopsins,” Nat. Methods, 14, 271–274 (2017).CrossRefGoogle Scholar
  40. Mukohata Y. and Kaji Y., “Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: Effects of N,N’-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847),” Arch. Biochem. Biophys., 206, 72–76 (1981).CrossRefGoogle Scholar
  41. Nagel G., Brauner M., Liewald J. F., et al., “Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol., 15, 2279–2284 (2005).CrossRefGoogle Scholar
  42. Nagel G., Ollig D., Fuhrmann M., et al., “Channelrhodopsin-1: a light-gated proton channel in green algae,” Science, 296, 2395–2398 (2002).CrossRefGoogle Scholar
  43. Nagel G., Szellas T., Huhn W., et al., “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. USA, 100, 13940–13945 (2003).CrossRefGoogle Scholar
  44. Oesterhelt D. and Stoeckenius W., “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature, 233, 149–152 (1971).Google Scholar
  45. Park S. A., Lee S. R., Tung L., and Yue D. T., “Optical mapping of optogenetically shaped cardiac action potentials,” Sci. Rep., 4, 6125 (2014).Google Scholar
  46. Paz J. T., Davidson T. J., Frechette E. S., et al., “Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury,” Nat. Neurosci., 16, 64–70 (2013).CrossRefGoogle Scholar
  47. Price G. D. and Trussell L. O., “Estimate of the chloride concentration in a central glutamatergic terminal: a gramicidin perforated-patch study on the calyx of Held,” J. Neurosci., 26, 11432–11436 (2006).CrossRefGoogle Scholar
  48. Schneider F., Grimm C., and Hegemann P., “Biophysics of channelrhodopsin,” Annu. Rev. Biophys., 44, 167–186 (2015).CrossRefGoogle Scholar
  49. Schobert B. and Lanyi J. K., “Halorhodopsin is a light-driven chloride pump,” J. Biol. Chem., 257, 10306–10313 (1982).Google Scholar
  50. Sineshchekov O. A., Govorunova E. G., Li H., and Spudich J. L., “Gating mechanisms of a natural anion channelrhodopsin,” Proc. Natl. Acad. Sci. USA, 112, 14236–14241 (2015).CrossRefGoogle Scholar
  51. Sineshchekov O. A., Govorunova E. G., and Spudich J. L., “Photosensory functions of channelrhodopsins in native algal cells,” Photochem. Photobiol., 85, 556–563 (2009).CrossRefGoogle Scholar
  52. Sineshchekov O. A., Jung K.-H., and Spudich J. L., “Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. USA, 99, 8689–8694 (2002).CrossRefGoogle Scholar
  53. Sineshchekov O. A., Li H., Govorunova E. G., and Spudich J. L., “Photochemical reaction cycle transitions during anion channelrhodopsin gating,” Proc. Natl. Acad. Sci. USA, 113, E1993–2000 (2016).CrossRefGoogle Scholar
  54. Sineshchekov O. A. and Spudich J. L., Sensory Rhodopsin Signaling in Green Flagellate Algae. Handbook of Photosensory Receptors, Wiley-VCH, Weinheim (2005), pp. 25–42.CrossRefGoogle Scholar
  55. Tsunoda S. P. and Hegemann P., “Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation,” Photochem. Photobiol., 85, 564–569 (2009).CrossRefGoogle Scholar
  56. Verhoefen M. K., Bamann C., Blocher R., et al., “The photocycle of channelrhodopsin-2: Ultrafast reaction dynamics and subsequent reaction steps,” Chemphyschem., 11, 3113–3122 (2010).CrossRefGoogle Scholar
  57. Wietek J., Beltramo R., Scanziani M., et al., “An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo,” Sci. Rep., 5, 14807 (2015).CrossRefGoogle Scholar
  58. Wietek J., Broser M., Krause B. S., and Hegemann P., “Identification of a natural green light absorbing chloride conducting channelrhodopsin from Proteomonas sulcata,” J. Biol. Chem., 291, 4121–4127 (2016).CrossRefGoogle Scholar
  59. Wietek J. and Prigge M., “Enhancing channelrhodopsins: An overview,” Methods Mol. Biol., 1408, 141–165 (2016).CrossRefGoogle Scholar
  60. Zhang F., Vierock J., Yizhar O., et al., “The microbial opsin family of optogenetic tools,” Cell, 147, 1446–1457 (2011).CrossRefGoogle Scholar
  61. Zhang F., Wang L. P., Brauner M., et al., “Multimodal fast optical interrogation of neural circuitry,” Nature, 446, 633–639 (2007).CrossRefGoogle Scholar
  62. Zhao M., Alleva R., Ma H., et al., “Optogenetic tools for modulating and probing the epileptic network,” Epilepsy Res., 116, 15–26 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. G. Govorunova
    • 1
  • О. А. Sineshchekov
    • 1
  • J. L. Spudich
    • 1
    Email author
  1. 1.University of Texas Health Science Center at Houston McGovern Medical SchoolHoustonUSA

Personalised recommendations