Advertisement

Neuroscience and Behavioral Physiology

, Volume 49, Issue 1, pp 103–108 | Cite as

Methodological Features of the Morphometric Characterization of the Synaptoarchitectonics of the Human Neocortex by Immunofluorescent Detection of Neuromodulin

  • A. S. Stepanov
  • V. A. Akulinin
  • S. S. Stepanov
  • D. B. Avdeev
Article
  • 3 Downloads

Objective. To study the possibility of using GAP-43 for morphometric characterization of synaptoarchitectonics. Materials and methods. Studies used immunofluorescent detection of neuromodulin (GAP-43) by confocal microscopy and automated computer image analysis of layer V (field 4) of the human brain (n = 4) using ImageJ 1.46. Results. Immunofluorescent detection of GAP-43 identified the distribution of axodendritic and axosomatic synapses, the total area of axon terminals, and the number densities of intermediate and large terminals. Conclusions. A necessary condition for obtaining accurate data is having digital images with sufficient resolution (600–900 pixels per inch). These results need to be considered in studies of the synaptoarchitectonics of the neocortex using immunohistochemical methods for investigating synapse structure.

Keywords

neocortex synapses neuromodulin immunofluorescence automated computer analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Gilerovich, E. G. Sukhorukova, O. V. Kirik, I. P. Grigor’ev, and D. E. Korzhevskii, “Detection of specialized synaptic groups (glomeruli) in the human cerebellum using an immunocytochemical reaction for synaptophysin and confocal laser microscopy,” Morfologiya, 146, No. 5, 73–77 (2014).Google Scholar
  2. 2.
    A. V. Mytsik, V. A. Akulinin, S. S. Stepanov, and P. M. Larionov, “Potential for morphometric characterization of human neocortex synapses in immunohistochemnical verification,” Sibirsk. Med. Zh., 118, No. 3, 66–69 (2013).Google Scholar
  3. 3.
    A. V. Mytsik, V. A. Akulinin, S. S. Stepanov, A. V. Sergeev, and P. M. Larionov, “Immunofluorescence verification and morphometry of axosomatic synapses in the human neocortex in acute and chronic ischemia,” Morfol. Ved., No. 3, 53–60 (2012).Google Scholar
  4. 4.
    V. V. Semchenko, S. S. Stepanov, and N. N. Bogolepov, Synaptic Plasticity of the Brain (basic and applied aspects), Media-Sfera, Moscow (2014), 2nd ed.Google Scholar
  5. 5.
    V. V. Semchenko, S. S. Stepanov, and S. I. Ereniev, “Structural-functional recovery of nervous tissue in the brain during the postischemic period from the point of view of the concept of the provisional nature of repair histogenesis,” Tikhookeansk. Med. Zh., No. 2, 98–102 (2016).Google Scholar
  6. 6.
    A. V. Sergeev, S. S. Stepanov, V. A. Akulinin, and A. V. Mytsik, “Natural protective mechanisms of the human brain in chronic ischemia,” Obshsh. Reanimatol., 11, No. 1, 22–32 (2015).CrossRefGoogle Scholar
  7. 7.
    C. P. Arthur and M. H. B. Stowell, “Structure of synaptophysin: a hexameric MARVEL-domain channel protein,” Structure, 15, No. 6, 707–714 (2007), doi:  https://doi.org/10.1016/j.str.2007.04.0118.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    G. Grasselli and P. Strata, “Structural plasticity of climbing fibers and the growth-associated protein GAP-43,” Front. Neural. Circuits, 7, No. 25, 1–7 (2013), doi:  https://doi.org/10.3389/fncir.2013.000259.CrossRefGoogle Scholar
  9. 9.
    S. E. Kwon and E. R. Chapman, “Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons,” Neuron, 70, No. 5, 847–854 (2011), doi:  https://doi.org/10.1016/j.neuron.2011.04.00110.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    J. I. Luebke, M. Medalla, J. M. Amatrudo, C. M. Weaver, J. L. Crimins, B. Hunt, P. R. Hof, and A. Peters, “Age-related changes to layer 3 pyramidal cells in the rhesus monkey visual cortex,” Vis. Cereb. Cortex, 25, No. 6, 1454–1468 (2015), doi: https://doi.org/10.1093/cercor/bht33611.CrossRefGoogle Scholar
  11. 11.
    A. Peters, C. Sethares, and J. I. Luebke, “Synapses are lost during aging in the primate prefrontal cortex,” Neuroscience, 152, No. 4, 970–981 (2008), doi:  https://doi.org/10.1016/j.neuroscience.2007.07.01412.CrossRefPubMedGoogle Scholar
  12. 12.
    S. M. Powell, “Gene targeting of presynaptic proteins in synaptic plasticity and memory: across the great divide,” Neurobiol. Learn. Mem., 85, No. 1, 2–15 (2006), doi:  https://doi.org/10.1016/j.nlm.2005.08.014.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. S. Stepanov
    • 1
  • V. A. Akulinin
    • 1
  • S. S. Stepanov
    • 1
  • D. B. Avdeev
    • 1
  1. 1.Department of Histology, Cytology, and Embryology, Omsk State Medical UniversityMinistry of Health of the Russian FederationOmskRussia

Personalised recommendations