Advertisement

Neuroscience and Behavioral Physiology

, Volume 49, Issue 1, pp 13–19 | Cite as

Current Views on Chronic Pain and Its Relationship to the State of Sleep

  • M. L. KukushkinEmail author
  • M. G. Poluektov
Article

Chronic pain is a unique pathophysiological state characterized by the formation of stable neurotransmitter, morphological, and behavioral patterns. Sleep has a facilitating influence on many pain syndromes by blocking signal conduction via the nociceptive pathways, the release of specific neurotransmitters, and the lack of conscious perception during this period. Restriction to the duration of sleep and impairment to its structure are accompanied by increased pain, while improvements in sleep in some cases allow pain to be decreased.

Keywords

sleep chronic pain insomnia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms, H. Merskey and N. Bogduk (eds.), Prepared by the International Association for the Study of Pain and the Task Force on Taxonomy, IASP Press, Seattle (1994), 2nd ed.Google Scholar
  2. 2.
    N. N. Yakhno and M. L. Kukushkin (eds.), Pain: Practical Guidelines for Doctors, Russian Academy of Medical Sciences Press, Moscow (2011).Google Scholar
  3. 3.
    N. N. Yakhno and M. L. Kukushkin, “Chronic pain: medical-biological and social-economic aspects,” Vest. Ross. Akad. Med. Nauk., 9, 54–58 (2012).CrossRefGoogle Scholar
  4. 4.
    H. Breivik, B. Collett, V. Ventafridda, R. Cohen, and D. Gallacher, “Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment,” Eur. J. Pain, 10, 287–333 (2006),  https://doi.org/10.1016/j.ejpain.2005.06.009.CrossRefGoogle Scholar
  5. 5.
    S. B. McMahon and M. Koltzenburg (eds.), Wall and Melzack’s Textbook of Pain, Elsevier Churchill Livingstone (2015), 5th ed.Google Scholar
  6. 6.
    D. Buskila, “Genetics of chronic pain states,” Best Pract. Res. Clin. Rheumatol., 21, 535–547 (2007),  https://doi.org/10.1016/j.berh.2007.02.011.CrossRefGoogle Scholar
  7. 7.
    M. L. Kukushkin and N. K. Khitrov, General Pain Pathology, Meditsina, Moscow (2004).Google Scholar
  8. 8.
    R. R. Edwards, “Genetic predictors of acute and chronic pain,” Curr. Rheumatol. Rep., 8, 411–417 (2006),  https://doi.org/10.1007/s11926-006-0034-2.CrossRefGoogle Scholar
  9. 9.
    L. Diatchenko, G. D. Slade, A. G. Nackley, K. Bhalang, A. Sigurdsson, I. Belfer, D. Goldman, K. Xu, S. A. Shabalina, D. Shagin, M. B. Max, S. S. Makarov, and W. Maixner, “Genetic basis for individual variations in pain perception and the development of a chronic pain condition,” Hum. Mol. Genet., 14, No. 1, 135–143 (2005),  https://doi.org/10.1093/hmg/ddi013.CrossRefGoogle Scholar
  10. 10.
    M. L. Lacroix-Fralish and J. S. Mogil, “Progress in genetic studies of pain and analgesia,” Annu. Rev. Pharmacol. Toxicol., 49, 97–121 (2009),  https://doi.org/10.1146/annurev-pharmtox-061008-103222.CrossRefGoogle Scholar
  11. 11.
    F. Seifert and C. Maihofner, “Functional and structural imaging of pain-induced neuroplasticity,” Curr. Opin. Anaesthesiol., 24, 515–523 (2011),  https://doi.org/10.1097/ACO.0b013e32834a1079.CrossRefGoogle Scholar
  12. 12.
    A. K. Jetzer, A. Morel, M. Magnin, and D. Jeanmonod, “Crossmodal plasticity in the human thalamus: evidence from intraoperative macrostimulations,” Neuroscience, 164, 1867–1875 (2009),  https://doi.org/10.1016/j.neuroscience.2009.09.064.CrossRefGoogle Scholar
  13. 13.
    M. G. Pshennikova, V. S. Smirnova, V. N. Grafova, M. V. Shimkovich, I. Yu. Malyshev, and M. L. Kukushkin, “Resistance to the development of neuropathic pain syndrome in August rats and a population of Wistar rats with different innate levels of resistance to stress,” Bol’, 2, 13–16 (2008).Google Scholar
  14. 14.
    D. Buskila, P. Sarzi-Puttini, and J. N. Ablin, “The genetics of fibromyalgia syndrome,” Pharmacogenomics, 8, 67–74 (2007),  https://doi.org/10.2217/14622416.8.1.67.CrossRefGoogle Scholar
  15. 15.
    A. V. Osipov and M. L. Kukushkin, “Effects of stress on the development of deafferentation pain syndrome in rats after transection of the sciatic nerve,” Byull. Eksperim. Biol. Med., 115, No. 5, 471–473 (1993).Google Scholar
  16. 16.
    E. Kohlschütter, “Messungen der Festigkeit des Schlafes,” Z. Ration. Med., 17, 209–253 (1863).Google Scholar
  17. 17.
    M. Steriade, D. A. McCormick, and T. J. Sejnowski, “Thalamocortical oscillations in the sleeping and aroused brain,” Science, 262, No. 5134, 679–685 (1993).CrossRefGoogle Scholar
  18. 18.
    J. H. Peever and B. J. Sessle, “Sensory and motor processing during sleep and wakefulness,” in: Principles and Practice of Sleep Medicine, M. H. Kryger, T. Roth, and W. C. Dement (eds.), Elsevier, Philadelphia (2016).Google Scholar
  19. 19.
    G. Sandrini, I. Milanov, B. Rossi, L. Murri, E. Alfonsi, A. Moglia, and G. Nappi, “Effects of sleep on spinal nociceptive reflexes in humans,” Sleep, 24, No. 1, 13–17 (2001).CrossRefGoogle Scholar
  20. 20.
    S. S. Ødegård, P. M. Omland, K. B. Nilsen, M. Stjern, G. B. Gravdahl, and T. Sand, “The effect of sleep restriction on laser evoked potentials, thermal sensory and pain thresholds and suprathreshold pain in healthy subjects,” Clin. Neurophysiol., 126, No. 10, 1979–1978 (2015),  https://doi.org/10.1016/j.clinph.2014.12.011.CrossRefGoogle Scholar
  21. 21.
    T. Roehrs, M. Hyde, B. Blaisdell, M. Greenwald, and T. Roth, “Sleep loss and REM sleep loss are hyperalgesic,” Sleep, 29, No. 2, 145–151 (2006).CrossRefGoogle Scholar
  22. 22.
    T. A. Roehrs, E. Harris, S. Randall, and T. Roth, “Pain sensitivity and recovery from mild chronic sleep loss,” Sleep, 35, No. 12, 1667–1672 (2012),  https://doi.org/10.5665/sleep.2240.PubMedPubMedCentralGoogle Scholar
  23. 23.
    P. H. Finan, B. R. Goodin, and M. T. Smith, “The association of sleep and pain: An update and a path forward,” Pain, 14, No. 12, 1539–1552 (2013),  https://doi.org/10.1016/j.jpain.2013.08.007.CrossRefGoogle Scholar
  24. 24.
    M. T. Smith and J. A. Haythornthwaite, “How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive-behavioral clinical trials literature,” Sleep Med. Rev., 8, 119–132 (2004),  https://doi.org/10.1016/S1087-0792(03)00044-3.CrossRefGoogle Scholar
  25. 25.
    D. J. Taylor, L. J. Mallory, K. L. Lichstein, H. H. Durrence, B. W. Riedel, and A. J. Bush, “Comorbidity of chronic insomnia with medical problems,” Sleep, 30, 213–218 (2007).CrossRefGoogle Scholar
  26. 26.
    M. T. Smith, M. Perlis, M. S. Smith, D. E. Giles, and T. P. Carmody, “Sleep quality and presleep arousal in chronic pain,” J. Behav. Med., 23, 1–13 (2000).CrossRefGoogle Scholar
  27. 27.
    L. Kelman, “The triggers or precipitants of the acute migraine attack,” Cephalalgia, 27, 394–402 (2007),  https://doi.org/10.1111/j.1468-2982.2007.01303.x.CrossRefGoogle Scholar
  28. 28.
    P. K. Sahota and J. D. Dexter, “Sleep and headache syndromes: A clinical review,” Headache, 30, 80–84 (1990).CrossRefGoogle Scholar
  29. 29.
    P. R. Holland, “Headache and sleep: Shared pathophysiological mechanisms,” Cephalalgia, 34, No. 10, 725–744 (2014),  https://doi.org/10.1177/0333102414541687.CrossRefGoogle Scholar
  30. 30.
    E. B. Arushanyan and E. V. Beier, “The epiphyseal hormone melatonin – a universal natural adaptogen,” Usp. Fiziol. Nauk., 43, No. 2, 82–100 (2012).Google Scholar
  31. 31.
    E. B. Arushanyan, “Comparative assessment of epiphyseal melatonin and benzodiazepine anxiolytics,” Eksp. Klin. Farmakol., 75, No. 3, 35–40 (2012).Google Scholar
  32. 32.
    C. Laurido, T. Pelissie, R. Soto-Moyano, L. Valladares, F. Flores, and A. Hernandez, “Effect of melatonin on rat spinal cord nociceptive transmission,” Neuroreport, 13, No. 1, 89–91 (2002).CrossRefGoogle Scholar
  33. 33.
    S. M. El-Shenawy, O. M. Abdel-Salam, A. R. Baiuomy, S. El-Batran, and M. S. Arbid, “Studies on the inflammatory and anti-nociceptive effect of melatonin in the rat,” Pharmacol. Res., 46, 3:235–243 (2002).CrossRefGoogle Scholar
  34. 34.
    M. Ambriz-Tututi and V. Granados-Soto, “Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors,” Pain, 132, 3:273–280 (2007),  https://doi.org/10.1016/j.pain.2007.01.025.CrossRefGoogle Scholar
  35. 35.
    V. Srinivasan, E. C. Lauterbach, K. Y. Ho, D. Acuna-Castroviejo, R. Zakaria, and A. Brzezinski, “Melatonin in antinociception: Its therapeutic applications,” Curr. Neuropharmacol., 10, 167–178 (2012),  https://doi.org/10.2174/157015912800604489.CrossRefGoogle Scholar
  36. 36.
    M. Wilhelmsen, I. Amirian, R. J. Reiter, J. Rosenberg, and I. Gogenur, “Analgesic effects of melatonin: a review of current evidence from experimental and clinical studies,” J. Pineal Res., 51, No. 3, 270–277 (2011),  https://doi.org/10.1111/j.1600-079X.2011.00895.x.CrossRefGoogle Scholar
  37. 37.
    S. A. Hussain, H. Al-Khalifa, N. A. Jasim, and F. I. Gorial, “Adjuvant use of melatonin for treatment of fibromyalgia,” J. Pineal Res., 50, 267–271 (2011),  https://doi.org/10.1111/j.1600-079X.2010.00836.x.CrossRefGoogle Scholar
  38. 38.
    V. M. Koval’zon, “The role of the orexinergic system of the brain in regulating waking and sleep,” Effektiv. Farmakoter. Nevrol. Psikhiatr., Spec. Iss., Sleep and Its Disorders-4, 19, 6–14 (2016).Google Scholar
  39. 39.
    T. Yamamoto, N. Nozaki-Taguchi, and T. Chiba, “Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test,” Brit. J. Pharmacol., 137, 170–176 (2002),  https://doi.org/10.1038/sj.bjp.0704851.CrossRefGoogle Scholar
  40. 40.
    I. V. Estabrooke, M. T. McCarthy, E. Ko, T. C. Chou, R. M. Chemelli, M. Yanagisawa, C. B. Saper, and T. E. Scammell, “Fos expression in orexin neurons varies with behavioral state,” J. Neurosci., 21, No. 5, 1656–1662 (2001).CrossRefGoogle Scholar
  41. 41.
    S. V. Mahler, D. E. Moorman, R. J. Smith, M. H. James, and G. Aston- Jones, “Motivational activation: a unifying hypothesis of orexin/hypocretin function,” Nat. Neurosci., 17, 1298–1303 (2014),  https://doi.org/10.1038/nn.3810.CrossRefGoogle Scholar
  42. 42.
    A. Inutsuka, A. Yamashita, S. Chowdhur, J. Nakai, M. Ohkura, T. Taguchi, and A. Yamanaka, “The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation,” Sci. Rep., 6, 29480 (2016),  https://doi.org/10.1038/srep29480.
  43. 43.
    M. G. Poluektov (ed.), Somnology and Sleep Medicine: National Guidelines in Memory of A. M. Vein and Ya. I. Levin, Medforum, Moscow (2016).Google Scholar
  44. 44.
    S. R. Currie, K. G. Wilson, and D. Curran, “Clinical significance and predictors of treatment response to cognitive-behavior therapy for insomnia secondary to chronic pain,” J. Behav. Med., 25, 135–153 (2002).CrossRefGoogle Scholar
  45. 45.
    J. D. Edinger, W. K. Wohlgemuth, A. D. Krystal, and J. R. Rice, “Behavioral insomnia therapy for fibromyalgia patients: a randomized clinical trial,” Arch. Intern. Med., 165, No. 21, 2527–2535 (2005),  https://doi.org/10.1001/archinte.165.21.2527.CrossRefGoogle Scholar
  46. 46.
    M. Vitiello, B. Rybarczyk, and E. Stephanski, “Sleep as analgesic: improving sleep and pain in older adults [abstract No. 0302],” Sleep, 30, Suppl. A, 103–194 (2007).Google Scholar
  47. 47.
    N. K. Tang, “Cognitive-behavioral therapy for sleep abnormalities of chronic pain patients,” Curr. Rheumatol. Rep., 11, No. 6, 451–460 (2009).CrossRefGoogle Scholar
  48. 48.
    M. Grönblad, J. Nykanen, Y. Konttinen, E. Jarvinen, and T. Helve, “Effect of zopiclone on sleep quality, morning stiffness, widespread tenderness and pain and general discomfort in primary fibromyalgia patients. A double-blind randomized trial,” Clin. Rheumatol., 12, 186–191 (1993).CrossRefGoogle Scholar
  49. 49.
    H. Moldofsky, F. A. Lue, C. Mously, B. Roth-Schechter, and W. J. Reynolds, “The effect of zolpidem in patients with fibromyalgia: a dose ranging, double blind, placebo controlled, modified crossover study,” J. Rheumatol., 23, 529–533 (1996).PubMedGoogle Scholar
  50. 50.
    T. A. Roehrs, “Does effective management of sleep disorders improve pain symptoms?” Drugs, 69, No. 2, 5–11 (2009),  https://doi.org/10.2165/11531260-000000000-00000.CrossRefGoogle Scholar
  51. 51.
    J. K. Walsh, M. J. Muehlbach, S. A. Lauter, N. A. Hilliker, and P. K. Schweitzer, “Effects of triazolam on sleep, daytime sleepiness, and morning stiffness in patients with rheumatoid arthritis,” J. Rheumatol., 23, No. 2, 245–252 (1996).PubMedGoogle Scholar
  52. 52.
    P. Morillas-Arques, C. M. Rodriguez-Lopez, R. Molina-Barea, F. Rico-Villademoros, and E. P. Calandre, “Trazodone for the treatment of fibromyalgia: an open-label, 12-week study,” BMC Musculoskelet. Disord., 11, 204 (2010),  https://doi.org/10.1186/1471-2474-11-204.
  53. 53.
    B. Saletu, W. Prause, P. Anderer, M. Mandl, M. Aigner, O. Mikova, and G. M. Saletu-Zyhlarz, “Insomnia in somatoform pain disorder: sleep laboratory studies on differences to controls and acute effects of trazodone, evaluated by the Somnolyzer 24×7 and the Siesta database,” Neuropsychobiology, 51, No. 3, 148–63 (2005),  https://doi.org/10.1159/000085207.CrossRefGoogle Scholar
  54. 54.
    M. G. Poluektov, Ya. I. Levin, V. A. Mikhailov, S. L. Babak, and K. N. Strygin, “Use of Trittico (trazodone) for the treatment of sleep impairments in depression: results of a multicenter trial,” Effektiv. Farmakoter. Nevrol. Psikhiatr., Spec. Iss., Sleep and Its Disorders, 12, 82–90 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia

Personalised recommendations