Advertisement

Neuroscience and Behavioral Physiology

, Volume 48, Issue 8, pp 1024–1031 | Cite as

The Dorsal and Ventral Hippocampus Have Different Reactivities to Proinflammatory Stress: Corticosterone Levels, Cytokine Expression, and Synaptic Plasticity

  • M. V. Onufriev
  • Sh. S. Uzakov
  • S. V. Freiman
  • M. Yu. Stepanichev
  • Yu. V. Moiseeva
  • N. A. Lazareva
  • V. A. Markevich
  • N. V. Gulyaeva
Article
  • 1 Downloads

The dorsal and ventral parts of the hippocampus are functionally and morphologically nonidentical, and differences include stress reactivity. The present report describes the first study of the influence of proinflammatory stress induced by administration of lipopolysaccharide on the functional state and levels of the stress hormone corticosterone and proinflammatory cytokines in the dorsal (DH) and ventral (VH) hippocampus as compared with the neocortex, as well as changes in blood levels. The DH and VH responded specifically to proinflammatory stress: neurological inflammation developed more quickly in the DH, while corticosterone accumulation occurred more quickly in the neocortex and VH; functionally (in terms of the state of synaptic plasticity and the phenomenon of in vivo long-term potentiation), the DH suffered first, impairments then spreading to the VH.

Keywords

proinflammatory stress neuroplasticity dorsal hippocampus ventral hippocampus lipopolysaccharide corticosterone proinflammatory cytokines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, C., Nolan Y, Clarke, R., Lynch, A., and Lynch, M., “Activation of c-Jun-N-terminal kinase is critical in mediating lipopolysaccharide-induced changes in the rat hippocampus,” J. Neurochem., 93, 221–231 (2005).CrossRefGoogle Scholar
  2. Beishuizen, A. and Thijs, L., “Endotoxin and the hypothalamo-pituitaryadrenal (HPA) axis,” J. Endotoxin Res., 9, 3–24 (2003).PubMedGoogle Scholar
  3. Bellinger, F. P., Madamba, S. G., Campbell, I. L., and Siggins, G. R., “Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6,” Neurosci. Lett., 198, 95–98 (1995).CrossRefGoogle Scholar
  4. Caudal, D., Jay, T., and Godsil, B., “Behavioral stress induces regionally-distinct shifts of brain mineralocorticoid and glucocorticoid receptor levels,” Front. Behav. Neurosci., 29, 8–19 (2014).Google Scholar
  5. Chakravarty, S. and Herkenham, M., “Toll-like receptor 4 on nonhematopoietic cells sustains CNS infl ammation during endotoxemia, independent of systemic cytokines,” J. Neurosci., 25, 1788–1796 (2005).CrossRefGoogle Scholar
  6. Chung, D. W., Yoo, K. Y., Hwang, I. K., Kim, D. W., Chung, J. Y., Lee, C. H., Choi, J. H., Choi, S. Y., Youn, H. Y., Lee, I. S., and Won, M. H., “Systemic administration of lipopolysaccharide induces cyclooxygenase-2 immunoreactivity in endothelium and increases microglia in the mouse hippocampus,” Cell. Mol. Neurobiol., 30, 531–541 (2010).CrossRefGoogle Scholar
  7. Cunningham, A. J., Murray, C. A., O’Neill, L. A., Lynch, M. A., and O’Connor, J. J., “Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro,” Neurosci. Lett., 203, 17–20 (1996).CrossRefGoogle Scholar
  8. Dallman, M. F., “Fast glucocorticoid actions on brain: back to the future,” Front. Neuroendocrinol., 26, 103–108 (2005).CrossRefGoogle Scholar
  9. Dantzer, R., “Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity,” Eur. J. Pharmacol., 500, 399–411 (2004).CrossRefGoogle Scholar
  10. Dorey, R., Pierard, C., Chauveau, F., David, V., and Beracochea, D., “Stress-induced memory retrieval impairments: different timecourse involvement of corticosterone and glucocorticoid receptors in dorsal and ventral hippocampus,” Neuropsychopharmacology, 37, 2870–2880 (2012).CrossRefGoogle Scholar
  11. Fanselow, M. S. and Dong, H. W., “Are the dorsal and ventral hippocampus functionally distinct structures?” Neuron, 65, 7–19 (2010).CrossRefGoogle Scholar
  12. Gatti, S. and Bartfai, T., “Induction of tumor necrosis factor-alpha mRNA in the brain after peripheral endotoxin treatment: comparison with interleukin-1 family and interleukin-6,” Brain Res., 624, 291–294 (1993).CrossRefGoogle Scholar
  13. Gulyaeva, N. V., “Effects of stress factors on the functioning of the hippocampus in the adult body: molecular-cellular mechanisms and the dorsoventral gradient,” Ros. Fiziol. Zh. im. I. M. Sechenova, 99, 3–16 (2013).Google Scholar
  14. Gwosdow, A. R., Kumar, M. S., and Bode, H. H., “Interleukin 1 stimulation of the hypothalamic-pituitary-adrenal axis,” Am. J. Physiol., 258, 65–70 (1990).Google Scholar
  15. Herman, J. P., Figueiredo H, Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., and Choi, D. C., “Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness,” Front. Neuroendocrinol., 24, 151–180 (2003).CrossRefGoogle Scholar
  16. Joëls, M. and Baram, T., “The neuro-symphony of stress,” Nat. Rev. Neurosci., 10, 459–466 (2009).CrossRefGoogle Scholar
  17. Kelly, A., Vereker, E., Nolan, Y., Brady, M., Barry, C., Lo, C., Mills, K., and Lynch, M., “Activation of p38 plays a pivotal role in the inhibitory effect of lipopolysaccharide and interleukin-1 beta on long term potentiation in rat dentate gyrus,” J. Biol. Chem., 278, 19453–19462 (2003).CrossRefGoogle Scholar
  18. Maggio, N. and Segal, M., “Striking variations in corticosteroid modulation of long-term potentiation along the septotemporal axis of the hippocampus,” J. Neurosci., 27, 5757–5765 (2007).CrossRefGoogle Scholar
  19. Maggio, N., Shavit-Stein, E., Dori, A., Blatt, I., and Chapman, J., “Prolonged systemic infl ammation persistently modifi es synaptic plasticity in the hippocampus: modulation by the stress hormones,” Front. Mol. Neurosci., 4, 6–46 (2013).Google Scholar
  20. Murray, C. A. and Lynch, M. A., “Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation,” J. Neurosci., 18, 2974–2981 (1998).CrossRefGoogle Scholar
  21. Peregud, D. I., Yakovlev, A. A., Stepanichev, M. Y., Onufriev, M. V., Panchenko, L. F., and Gulyaeva, N. V., “Expression of BDNF and TrkB phosphorylation in the rat frontal cortex during morphine withdrawal are NO dependent,” Cell. Mol. Neurobiol., 36, 839–849 (2016).CrossRefGoogle Scholar
  22. Perretti, M., Duncan, G. S., Flower, R. J., and Peers, S. H., “Serum corticosterone, interleukin-1 and tumour necrosis factor in rat experimental endotoxaemia: comparison between Lewis and Wistar strains,” Br. J. Pharmacol., 110, 868–874 (1993).CrossRefGoogle Scholar
  23. Reul, J. M. and de Kloet, E. R., “Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation,” Endocrinology, 117, 2505–2511 (1985).CrossRefGoogle Scholar
  24. Segal, M., Richter-Levin, G., and Maggio, N., “Stress-induced dynamic routing of hippocampal connectivity: a hypothesis,” Hippocampus, 20, 1332–1338 (2010).CrossRefGoogle Scholar
  25. Sharvit, A., Segal, M., Kehat, O., Stork, O., and Richter-Levin, G., “Differential modulation of synaptic plasticity and local circuit activity in the dentate gyrus and CA1 regions of the rat hippocampus by corticosterone,” Stress, 18, 319–327 (2015).CrossRefGoogle Scholar
  26. Silverman, M. N., Pearce, B. D., Biron, C. A, and Miller, A. H., “Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection,” Viral Immunol., 18, 41–78 (2005).CrossRefGoogle Scholar
  27. Skelly, D. T., Hennessy, E., Dansereau, M. A., and Cunningham, C., “A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1β, TNF- α and IL-6 challenges in C57BL/6 mice,” PLoS One, 8, 34–41 (2013).CrossRefGoogle Scholar
  28. Tasker, J. G., Di, S., and Malcher-Lopes, R., “Minireview: rapid glucocorticoid signaling via membrane-associated receptors,” Endocrinology, 147, 5549–5556 (2006).CrossRefGoogle Scholar
  29. Theodosis, D. and MacVicar, B., “Neurone-glia interactions in the hypothalamus and pituitary,” Trends Neurosci., 19, 363–367 (1996).CrossRefGoogle Scholar
  30. Turnbull, A. V. and Rivier, C. L., “Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action,” Physiol. Rev., 79, 1–71 (1999).CrossRefGoogle Scholar
  31. Vereker, E., Campbell V, Roche, E., McEntee, E., and Lynch, M., “Lipopolysaccharide inhibits long term potentiation in the rat dentate gyrus by activating caspase-1,” J. Biol. Chem., 275, 26252–26258 (2000a).CrossRefGoogle Scholar
  32. Vereker, E., O’Donnell, E., and Lynch, M. A., “The inhibitory effect of interleukin-1beta on long-term potentiation is coupled with increased activity of stress-activated protein kinases,” J. Neurosci., 20, 6811–6819 (2000b).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. V. Onufriev
    • 1
  • Sh. S. Uzakov
    • 1
  • S. V. Freiman
    • 1
  • M. Yu. Stepanichev
    • 1
  • Yu. V. Moiseeva
    • 1
  • N. A. Lazareva
    • 1
  • V. A. Markevich
    • 1
  • N. V. Gulyaeva
    • 1
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations