Advertisement

Dark Neurons of the Brain

  • S. M. Zimatkin
  • E. I. Bon’
Article
  • 2 Downloads

The structure and functional characteristics of dark hyperchromic and hyperchromic shrunken neurons in the brain have been studied at the light and electron microscopic levels in health and various pathologies. Hyperchromic dark neurons are cells with active protein synthesis which, however, die by apoptosis as a result of prolonged and intense exposure to unfavorable factors or because of genetic abnormalities.

Keywords

hyperchromic neurons brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Aleksandrovskaya and Yu. Ya. Geinisman, “Structural and metabolic changes in the brain in animals after repeated administration of aminazine,” Byul. Eksper. Biol, 68, No. 9, 80–86 (1964).Google Scholar
  2. 2.
    M. V. Voino-Yasenetskii and Yu. M. Zhabotinskii, Sources of Errors in Morphological Studies, Nauka, Leningrad (1970).Google Scholar
  3. 3.
    Yu. L. Volyanskii, T. Yu. Kolotova, and N. V. Vasil’ev, “Molecular mechanisms of programmed cell death,” Usp. Sovrem. Biol., No. 6, 679–692 (1994).Google Scholar
  4. 4.
    S. V. Emel’yanchik and S. M. Zimatkin, The Brain in Cholestasis: Monograph, Grodno State University, Grodno (2011).Google Scholar
  5. 5.
    S. V. Emel’yanchik and S. M. Zimatkin, The Brain in Bile Drainage: Monograph, Grodno State University, Grodno (2012).Google Scholar
  6. 6.
    P. N. Ermokhin, Histology of the Central Nervous System, Meditsina, Moscow (1969).Google Scholar
  7. 7.
    N. K. Zenkov, E. B. Men’shikova, and N. N. Vol’skii, “Intracellular oxidative stress and apoptosis,” Usp. Sovr. Biol., No. 5, 440–450 (1999).Google Scholar
  8. 8.
    S. M. Zimatkin and E. I. Bon’, “Involution of cerebral cortex neurons in rats exposed to alcohol during pregnancy,” Vestsi NAN Belarusi, No. 1, 59–64 (2016).Google Scholar
  9. 9.
    S. M. Zimatkin and E. I. Bon’, “Dynamics of histological changes in the frontal cortex of rats subjected to antenatal exposure to alcohol,” Morfologiya, 149, No. 2, 11–15 (2016).Google Scholar
  10. 10.
    S. M. Zimatkin and E. I. Bon’, “Dynamics of cytochemical changes in the cingulate cortex of the brain of rats subjected to antenatal exposure to alcohol,” Novosti Med.-Biol. Nauk., No. 1, 17–22 (2016).Google Scholar
  11. 11.
    S. M. Zimatkin, E. I. Bon’, and O. B. Ostrovskaya, “Ultrastructure of the neurons of the frontal cortex of the brain of 20-day rats after antenatal alcoholization,” Vestsi NAN Belarusi, No. 3, 32–46 (2016).Google Scholar
  12. 12.
    S. M. Zimatkin, E. I. Bon’, and O. B. Ostrovskaya, “Ultrastructural changes in neurons of the frontal cerebral cortex in 45-day-old rats after prenatal exposure to alcohol,” Novosti Med.-Biol. Nauk., No. 3, 33–37 (2016).Google Scholar
  13. 13.
    S. M. Zimatkin and E. M. Fedina, “Histaminergic neurons of rat brain after chronic alcohol intoxication,” Novosti Med.-Biol. Nauk., No. 2, 137–144 (2012).Google Scholar
  14. 14.
    Z. A. Zuraboshvili, Aspects of Pathoarchitectonics and Histochemistry of the Central Nervous System on Exposure to Aminazine and Tofranil, Georgian SSR Academy of Sciences Press, Tbilisi (1964).Google Scholar
  15. 15.
    A. S. Iontov and V. F. Shefer, “Changes in the cerebral cortex in temporal epilepsy,” Zh. Nevrol. Psikhiat. im. S. S. Korsakova, No. 6, 891–895 (1981).Google Scholar
  16. 16.
    L. B. Kalimullina, “’Dark’ and ‘light’ cells,” Morfologiya, 122, No. 4, 75–80 (2002).Google Scholar
  17. 17.
    S. G. Kalinichenko and N. Yu. Matveeva, “Morphological characteristics of apoptosis and its signifi cance in neurogenesis,” Morfologiya, 131, No. 2, 16–28 (2007).Google Scholar
  18. 18.
    V. B. Karakhan, V. V. Krylov, and V. V. Lebedev, Traumatic Lesions of the Central Nervous System, Meditsina, Moscow (2001).Google Scholar
  19. 19.
    V. N. Kleshchinov, “Ultrastructure of neurons with hyperchromia and vacuolation observed in nervous tissue as a result of hypoxia,” Byull. Eksperim. Biol., 124, No. 11, 622–625 (1987).Google Scholar
  20. 20.
    V. N. Kleshchinov, E. I. Koidan, and N. S. Kolomeets, “Characteristics of hyperchromic neurons from foci of destruction,” Byul. Eksper. Biol., 96, No. 8, 104–106 (1983).Google Scholar
  21. 21.
    B. N. Klosovskii and E. N. Kosmarskaya, The Active and Inhibitory State of the Brain, Medgiz, Moscow (1961).Google Scholar
  22. 22.
    D. E. Korzhevskii, Molecular Neuromorphology, SpetsLit, St. Petersburg (2015).Google Scholar
  23. 23.
    V. B. Kuznetsova, E. I. Krishtofi k, and O. O. Kozlyakova, “Characteristics of the ultrastructure of the neurons of E2 histaminergic nucleus of the hypothalamus after subtotal brain ischemia and reperfusion,” Zn. Grodn. Gos. Med. Univ., No. 1, 45–48 (2015).Google Scholar
  24. 24.
    D. D. Orlovskaya and V. N. Kleshchinov, “Neurons and their hyperchromic state,” Zh. Nevrol. Psikhiat. im. S. S. Korsakova, No. 7, 981–988 (1986).Google Scholar
  25. 25.
    E. N. Popova, The Brain and Alcohol: Monograph, Nauka, Moscow (1984).Google Scholar
  26. 26.
    E. N. Popova, Brain Ultrastructure, Alcohol, and Offspring, Nauchniy Mir, Moscow (2010).Google Scholar
  27. 27.
    E. N. Popova, S. K. Lapin, and G. N. Krivitskaya, Morphology of Adaptive Changes in Nerve Structures, Meditsina, Moscow (1976).Google Scholar
  28. 28.
    Z. Ya. Rubleva, Yu. I. Savulev, and A. S. Pylaev, “Comparative electron microscopic and autoradiographic study of the ‘dark’ and ‘light’ neurons of the cerebral cortex,” Zh. Nevrol. Psikhiat. im. S. S. Korsakova, 77, No. 7, 966–970 (1977).Google Scholar
  29. 29.
    T. A. Rukan, N. E. Maksimovich, and S. M. Zimatkin, “Morphofunctional changes of rat brain frontal cortex neurons in ischemia-perfusion,” Zn. Grodn. Gos. Med. Univ., No. 4, 35–38 (2012).Google Scholar
  30. 30.
    Yu. I. Senchik and A. L. Polenov,, “Some data on electron microscopy of neurosecretory cells of the supraoptic nucleus of the white mouse,” Arkh. Anat. Gistol. Embriol. 70, No. 3, 45–53 (1976).Google Scholar
  31. 31.
    A. E. Snesarev, Theoretical Bases of the Pathological Anatomy of Mental Illnesses[in Russian], Medgiz, Moscow (1950).Google Scholar
  32. 32.
    L. V. Cherkasova and R. F. Davletchikova, “Ultrastructure of cerebral cortex neurons during hypoxic hypoxia,” Zh. Nevrol. Psikhiat. im. S. S. Korsakova, 88, No. 7, 16–19 (1988).Google Scholar
  33. 33.
    N. E. Yarygin and V. N. Yarygin, Pathological and Adaptive Changes in Neurons, Meditsina, Moscow (1973).Google Scholar
  34. 34.
    P. Baracskay, Z. Szepesi, and Orban, G., “Generalization of seizures parallels the formation of ‘dark’ neurons in the hippocampus and pontine reticular formation after focal-cortical application of 4-aminopyridine (4-AP) in the rat,” Brain Res., 1228, 217–228 (2008).CrossRefGoogle Scholar
  35. 35.
    A. Czurko and Nishino, H., “’Collapsed’ (argyrophilic, dark) neurons in rat model of transient focal cerebral ischemia,” Neurosci. Lett., 162, 71–74 (1993).CrossRefGoogle Scholar
  36. 36.
    L. Einarson and Krogh, E., “Variation in the basophilia of nerve cells associated with increased cell activity and functional stress,” J. Neurol. Neurosurg. Psychiatry, 18, 1–12 (1955).CrossRefGoogle Scholar
  37. 37.
    Gallyas, F., “Novel cell-biological ideas deducible from morphological observations on ‘dark’ neurons revisited,” Ideggyogy. Sz., 78, 212–222 (2007).Google Scholar
  38. 38.
    F. Gallyas, B. Gasz, A. Szigeti, and Mazlo, M., “Pathological circumstances impair the ability of ‘dark’ neurons to undergo spontaneous recovery,” Brain Res., 1110, 211–220 (2006).CrossRefGoogle Scholar
  39. 39.
    F. Gallyas, V. Kiglics, P. Baracskay, and Jushasz, G., “The mode of death of epilepsy-induced ‘dark’ neurons is neither necrosis nor apoptosis: an electron-microscopic study,” Brain Res., 1239, 207–215 (2008).CrossRefGoogle Scholar
  40. 40.
    F. Gallyas, J. Pal, and Bucovich, P., “Supravital microwave experiments support that the formation of ‘dark’ neurons is propelled by phase transition in an intracellular gel system,” Brain Res., 1270, 152–156 (2009).CrossRefGoogle Scholar
  41. 41.
    K. Ishida, H. Shimizu, H. Hida, and Urakawa, S., “Argyrophilic dark neurons represent various states of neuronal damage in brain insults: some come to die and others survive,” Neuroscience, 125, 633–644 (2004).CrossRefGoogle Scholar
  42. 42.
    N. Islam, A. Moriwaki, Y. Hattori, and Hori, Y., “Appearance of dark neurons following anodal polarization in the rat brain,” Acta Med. Okayama, 48, 123–130 (1994).Google Scholar
  43. 43.
    E. Kovesdi, J. Pal, and Gallyas, F., The fate of ‘dark’ neurons produced by transient focal cerebral ischemia in a non-necrotic and non-excitotoxic environment: neurobiological aspects,” Brain Res., 1147, 272–283 (2007).CrossRefGoogle Scholar
  44. 44.
    H. Ooigawa, H. Nawashiro, S. Fukui, N. Otani, and Osumi, A., “The fate of Nissl-stained dark neurons following traumatic brain injury in rats: difference between neocortex and hippocampus regarding survival rate,” Acta Neuropathol., 112, 471–481 (2006).CrossRefGoogle Scholar
  45. 45.
    I. Victorov and Prass, K., “Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin,” Brain Res. Protocols. 5, 135–139 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Histology, Cytology, and EmbryologyGrodno State Medical UniversityGrodnoBelarus

Personalised recommendations