Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

ArcFractal: An ArcGIS Add-In for Processing Geoscience Data Using Fractal/Multifractal Models

  • 207 Accesses


Fractal and multifractal models, including the concentration-area (C–A) fractal model, spectrum-area (S–A) multifractal model, and local singularity analysis (LSA) method, are widely applied when processing various geoscience datasets. However, there is lack of ArcGIS-based software that contains these popular fractal and multifractal models. Such a situation hinders the popularization and application of fractal and multifractal models. ArcFractal, an easy-to-use ArcGIS add-in for processing geoscience data using fractal and multifractal models, is introduced in this paper. It is developed using C# based on ArcObject for.Net, ArcEngine 10.2, ZedGraph, and Visual Studio 2010. ArcFractal operations require a Windows 7 operating system and ArcGIS Desktop, version 10.2 or higher. The main application of ArcFractal is to determine geochemical threshold/baseline for separating geochemical patterns into anomalous and background components using the C–A, S–A, and LSA techniques. A case study from China Geochemical Baselines Project (CGB) was used to demonstrate the advantage of ArcFractal for processing geochemical exploration data.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9


  1. Afzal, P., Fadakar, A. Y., Khakzad, A., Moarefvand, P., & Rashidnejad, O. N. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration,18, 220–232.

  2. Agterberg, F. P. (2012). Multifractals and geostatistics. Journal of Geochemical Exploration,122, 113–122.

  3. Bai, J., Porwal, A., Hart, C., Ford, A., & Yu, L. (2010). Mapping geochemical singularity using multifractal analysis: Application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. Journal of Geochemical Exploration,104, 1–11.

  4. Carranza, E. J. M. (2009) Geochemical anomaly and mineral prospectivity mapping in GIS. In Handbook of exploration and environmental geochemistry (Vol. 11). Amsterdam: Elsevier.

  5. Carranza, E. J. M., de Souza Filho, C. R., Haddad-Martim, P. M., Nagayoshi, K., & Shimizu, I. (2019). Macro-scale ore-controlling faults revealed by micro-geochemical anomalies. Scientific Reports,9, 4410.

  6. Chen, G., & Cheng, Q. (2016). Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration. Computers & Geosciences,87, 56–66.

  7. Chen, G., Cheng, Q., Zuo, R., Liu, T., & Xi, Y. (2015). Identifying gravity anomalies caused by granitic intrusions in Nanling mineral district, China: A multifractal perspective. Geophysical Prospecting,63, 256–270.

  8. Chen, Z., Cheng, Q., Chen, J., & Xie, S. (2007). A novel iterative approach for mapping local singularities from geochemical data. Nonlinear Processes in Geophysics,14, 317–324.

  9. Cheng, Q. (2000a). GeoData Analysis System (GeoDAS) for mineral exploration: User’s guide and exercise manual. Toronto: Material for the TrainingWorkshop on GeoDAS held at York University.

  10. Cheng, Q. (2000b). Interpolation by means of multiftractal, kriging and moving average techniques. In GeoCanada 2000, Proceedings of GAC/MAC Meeting, Calgary, AB, Canada [CD-ROM]. 29 May–2 June 2000. Geol. Assoc. Can., St. John’s, NF, Canada.

  11. Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews,32, 314–324.

  12. Cheng, Q. (2008). Modeling local scaling properties for multiscale mapping. Vadose Zone Journal,7, 525–532.

  13. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration,122, 55–70.

  14. Cheng, Q., & Agterberg, F. P. (1996). Muitifractal modeling and spatial statistics. Mathematical Geology,28, 1–16.

  15. Cheng, Q., & Agterberg, F. P. (2009). Singularity analysis of ore–mineral and toxic trace elements in stream sediments. Computers & Geosciences,35, 234–244.

  16. Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration,51, 109–130.

  17. Cheng, Q., Xu, Y., & Grunsky, E. (1999). Integrated spatial and spectral analysis for geochemical anomaly separation. In Proceedings of the fifth annual conference of the international association for mathematical geology, Trondheim.

  18. Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research,9, 43–52.

  19. Ge, Y., Cheng, Q., & Zhang, S. (2005). Reduction of edge effects in spatial information extraction from regional geochemical data: A case study based on multifractal filtering technique. Computers & Geosciences,31, 545–554.

  20. Gonçalves, M. A., Mateus, A., & Oliveira, V. (2001). Geochemical anomaly separation by multifractal modeling. Journal of Geochemical Exploration,72, 91–114.

  21. Gonçalves, M. A., Mateus, A., Pinto, F., & Vieira, R. (2018). Using multifractal modelling, singularity mapping, and geochemical indexes for targeting buried mineralization: Application to the W-Sn Panasqueira ore-system, Portugal. Journal of Geochemical Exploration,189, 42–53.

  22. Grunsky, E. C. (2010). The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis,10, 27–74.

  23. Lark, R., Patton, M., Ander, E., & Reay, D. (2018). The singularity index for soil geochemical variables, and a mixture model for its interpretation. Geoderma,323, 83–106.

  24. Lima, A., De, Vivo B., Cicchella, D., Cortini, M., & Albanese, S. (2003). Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of (Italy), Campania region. Applied Geochemistry,18, 1853–1865.

  25. Lima, A., Plant, J. A., De Vivo, B., Tarvainen, T., Albanese, S., & Cicchella, D. (2008). Interpolation methods for geochemical maps: A comparative study using arsenic data from European stream waters. Geochemistry: Exploration, Environment, Analysis,8, 41–48.

  26. Lin, X., Wang, X., Zhou, J., Chi, Q., Nie, L., Zhang, B., et al. (2019). Concentrations, variations and distribution of molybdenum (Mo) in catchment outlet sediments of China: Conclusions from the China geochemical baselines project. Applied Geochemistry,103, 50–58.

  27. Liu, D., Chi, Q., Chen, Y., Wang, X., Zhou, J., Liu, H., et al. (2019a). Research on the structure and genesis of tungsten geochemical block in south china. Geotectonica et Metallogenia. https://doi.org/10.16539/j.ddgzyckx.2018.06.016 (In Chinese with English abstract).

  28. Liu, Y., Cheng, Q., Carranza, E. J. M., & Zhou, K. (2019b). Assessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysis. Natural Resources Research,28, 199–212.

  29. Liu, Y., Xia, Q., & Carranza, E. J. M. (2019c). Integrating sequential indicator simulation and singularity analysis to analyze uncertainty of geochemical anomaly for exploration targeting of tungsten polymetallic mineralization, Nanling belt, South China. Journal of Geochemical Exploration,197, 143–158.

  30. Liu, Y., Zhou, K., & Cheng, Q. (2017). A new method for geochemical anomaly separation based on the distribution patterns of singularity indices. Computers & Geosciences,105, 139–147.

  31. Luz, F., Mateus, A., Matos, J. X., & Gonçalves, M. A. (2014). Cu- and Zn-soil anomalies in the NE border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research,23, 195–215.

  32. Mao, J., Cheng, Y., Chen, M., & Pirajno, F. (2013). Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita,48, 267–294.

  33. Mao, J., Hongyan, L., Shimazaki, H., Raimbault, L., & Guy, B. (1996). Geology and metallogeny of the Shizhuyuan skarn–greisen deposit, Hunan Province, China. International Geology Reviews,38, 1020–1039.

  34. Petrik, A., Jordan, G. Albanese, Lima, A., Rolandi, R., & De Vivo, B. (2018). Spatial pattern analysis of Ni concentration in topsoils in the Campania Region (Italy). Journal of Geochemical Exploration,195, 130–142.

  35. Sun, X., Gong, Q., Wang, Q., Yang, L., Wang, C., & Wang, Z. (2010). Application of local singularity model to delineate geochemical anomalies in Xiong’ershan gold and molybdenum ore district, Western Henan province, China. Journal of Geochemical Exploration,107, 21–29.

  36. Wang, D., Chen, Z., Huang, G., Wu, G., & Chen, F. (2012). Northwards and westwards prospecting for tungsten and its significance in South China. Geotectonica et Metallogenia,36, 322–329. (in Chinese with English abstract).

  37. Wang, W., Cheng, Q., Zhang, S., & Zhao, J. (2018). Anisotropic singularity: A novel way to characterize controlling effects of geological processes on mineralization. Journal of Geochemical Exploration,189, 32–41.

  38. Wang, X., Han, Z., Wang, W., Zhang, B., Wu, H., Nie, L., et al. (2019). Continental-scale geochemical survey of lead (Pb) in mainland China’s pedosphere: Concentration, spatial distribution and influences. Applied Geochemistry,100, 55–63.

  39. Wang, X., & the CGB Sampling Team. (2015). China geochemical baselines: Sampling methodology. Journal of Geochemical Exploration,148, 25–39.

  40. Wang, W., Zhao, J., & Cheng, Q. (2013). Fault trace–oriented singularity mapping technique to characterize anisotropic geochemical signatures in Gejiu mineral district, China. Journal of Geochemical Exploration,134, 27–37.

  41. Wang, J., & Zuo, R. (2015). A MATLAB-based program for processing geochemical data using fractal/multifractal modeling. Earth Science Informatics,8, 937–947.

  42. Wang, J., & Zuo, R. (2018). Identification of geochemical anomalies through combined sequential Gaussian simulation and grid-based local singularity analysis. Computers & Geosciences,118, 52–64.

  43. Wang, J., & Zuo, R. (2019). Recognizing geochemical anomalies via stochastic simulation-based local singularity analysis. Journal of Geochemical Exploration,198, 29–40.

  44. Xia, Q., Wang, X., Liu, Z., Li, T., Xiao, W., Feng, L., et al. (2017). Mineral potential prediction of W mineral deposits in China (p. 305). New York: Geological Press.

  45. Xiao, F., Chen, Z., Chen, J., & Zhou, Y. (2016). A batch sliding window method for local singularity mapping and its application for geochemical anomaly identification. Computers & Geosciences,90, 189–201.

  46. Xiao, F., Chen, J., Hou, W., Wang, Z., Zhou, Y., & Erten, O. (2018). A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. Journal of Geochemical Exploration,189, 122–137.

  47. Xiao, F., Wang, C., Chen, J., Zhang, Z., Wu, G., & Agterberg, F. P. (2012). Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in northwest Zhejiang, China. Journal of Geochemical Exploration,122, 90–100.

  48. Xie, S., Cheng, Q., Chen, G., Chen, Z., & Bao, Z. (2007). Application of local singularity in prospecting potential oil/gas targets. Nonlinear Processes in Geophysics,14, 285–292.

  49. Zaw, K., Peters, S. G., Cromie, P., Burrett, C., & Hou, Z. (2007). Nature, diversity of deposit types and metallogenic relations of South China. Ore Geology Reviews,31, 3–47.

  50. Zhang, D., Cheng, Q., Agterberg, F. P., & Chen, Z. (2016). An improved solution of local window parameters setting for local singularity analysis based on Excel VBA batch processing technology. Computers & Geosciences,88, 54–66.

  51. Zuo, R. (2011a). Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Applied Geochemistry,26, S271–S273.

  52. Zuo, R. (2011b). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration,111, 13–22.

  53. Zuo, R., & Cheng, Q. (2008). Mapping singularities—A technique to identify potential Cu mineral deposits using sediment geochemical data, an example for Tibet, west China. Mineralogical Magazine,72, 531–534.

  54. Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration,101, 225–235.

  55. Zuo, R., & Wang, J. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration,164, 33–41.

  56. Zuo, R., Wang, J., Chen, G., & Yang, M. (2015). Identification of weak anomalies: A multifractal perspective. Journal of Geochemical Exploration,148, 12–24.

  57. Zuo, R., Xia, Q., & Zhang, D. (2013). A comparison study of the C-A and S–A models with singularity analysis to identify geochemical anomalies in covered areas. Applied Geochemistry,33, 165–172.

Download references


Thanks are due to Prof. John Carranza, Editor-in-Chief for Natural Resources Research, Dr. Pablo Gumiel and two anonymous reviewers for their comments and suggestions, which helped us improve this paper. This study was supported jointly by the National Natural Science Foundation of China (41772344), the Natural Science Foundation of Hubei Province (China) (2017CFA053), and the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (MSFGPMR03–3).

Author information

Correspondence to Renguang Zuo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuo, R., Wang, J. ArcFractal: An ArcGIS Add-In for Processing Geoscience Data Using Fractal/Multifractal Models. Nat Resour Res 29, 3–12 (2020). https://doi.org/10.1007/s11053-019-09513-5

Download citation


  • ArcFractal
  • Fractal
  • Multifractal
  • ArcGIS
  • Geochemical exploration