Assessment of Thermal Maturity, Source Rock Potential and Paleodepositional Environment of the Paleogene Lignites in Barsingsar, Bikaner–Nagaur Basin, Western Rajasthan, India

  • Alok K. SinghEmail author
  • Alok Kumar
Original Paper


Investigations on the Paleogene lignites were carried out through geochemical, mineralogical and petrographic analyses to assess their paleodepositional environment, source rock potential and thermal maturity. The samples were collected from the Barsingsar lignite mines in the Bikaner–Nagaur Basin, Western Rajasthan, India. Huminite reflectance assigns these samples as lignite (low-rank coal). Barsingsar lignites are dominated by the huminite maceral group, while inertinites and liptinites occur in subordinated amount. The mineral matter is dominated by carbonates, pyrite and argillaceous (in descending order). Gelification index, tissue preservation index, groundwater index and vegetation index indicate the prevalence of a dry forest swamp having ombrotrophic to mesotrophic conditions in the paleomire. Rock–Eval pyrolysis indicates high hydrogen index relative to oxygen index and excellent hydrocarbon potential. The Barsingsar lignites are characterized by mixed type III and type II kerogens, which are thermally immature. Several minerals like quartz, coesite, siderite, aragonite and rutile minerals have been identified by XRD analysis, whereas selected trace elements primarily Sr, Zr, Cu, Pb, Zn, Cr, V, Ni, Rb and Co were also detected. Fourier-transform infrared spectroscopy pattern shows the dominance of clay minerals and the presence of aromatic, aliphatic and some oxygen functional groups in these lignites.


Bikaner–Nagaur Barsingsar lignite Petrography Geochemistry Paleoenvironment Thermal maturity 



The authors graciously acknowledge the support and are thankful to the Director of RGIPT for allowing the use of existing research facilities. They also most graciously acknowledge the support in sample collection provided by the officials of the Neyveli Lignite Corporation posted at Barsingsar lignite mines. The funding has come from Project No. SB/S4/ES-681/2013 sanctioned by the Department of Science & Technology, Government of India, for which the authors are grateful. Authors express their sincere gratitude to Editor-in-Chief of Natural Resources Research for considering our manuscript for the publication. Authors also thank the two anonymous reviewers for their comments and suggestions on the manuscript, which have improved the work presented in the new submission.


  1. Abdullah, W. H. (2003). Coaly source rocks of NW Borneo: Role of suberinite and bituminite in generation and expulsion. Bulletin of Geological Society of Malaysia, 47, 119–129.CrossRefGoogle Scholar
  2. Ahmad, A., Hakimi, M. H., & Chaudhry, M. N. (2015). Geochemical and organic petrographic characteristics of low-rank coals from Thar coalfield in the Sindh Province, Pakistan. Arabian Journal of Geosciences, 8(7), 5023–5038.CrossRefGoogle Scholar
  3. Armstrong-Altrin, J. S., & Machain-Castillo, M. L. (2016). Mineralogy, geochemistry, and radiocarbon ages of deep-sea sediments from the Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 71, 182–200.CrossRefGoogle Scholar
  4. ASTM D5373-08. (1993). Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal, pp. 1–11.Google Scholar
  5. ASTM D7708-11. (2011). Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks.Google Scholar
  6. Ayinla, H. A., Abdullah, W. H., Makeen, Y. M., Abubakar, M. B., Jauro, A., Yandoka, B. M. S., et al. (2017a). Petrographic and geochemical characterization of the Upper Cretaceous coal and mudstones of Gombe Formation, Gongola sub-basin, northern Benue trough Nigeria: Implication for organic matter preservation, paleodepositional environment and tectonic settings. International Journal of Coal Geology, 180, 67–82.CrossRefGoogle Scholar
  7. Ayinla, H. A., Abdullah, W. H., Makeen, Y. M., Abubakar, M. B., Jauro, A., Yandoka, B. M. S., et al. (2017b). Source rock characteristics, depositional setting and hydrocarbon generation potential of Cretaceous coals and organic rich mudstones from Gombe Formation, Gongola Sub-basin, Northern Benue Trough, NE Nigeria. International Journal of Coal Geology, 173, 212–226.CrossRefGoogle Scholar
  8. Baboolal, A. A., Littke, R., Wilson, B., Stock, A. T., & Knight, J. (2016). Petrographical and geochemical characterization of lignites, sub-bituminous coals and carbonaceous sediments from the Erin Formation, Southern Basin, Trinidad—Implications on microfacies, depositional environment and organic matter alteration. International Journal of Coal Geology, 163, 112–122.CrossRefGoogle Scholar
  9. Bechtel, A., Karayiğit, A. I., Bulut, Y., Mastalerz, M., & Sachsenhofer, R. F. (2016). Coal characteristics and biomarker investigations of Dombayova coals of Late Miocene–Pliocene age (Afyonkarahisar-Turkey). Organic Geochemistry, 94, 52–67.CrossRefGoogle Scholar
  10. Bechtel, A., Reischenbacher, D., Sachsenhofer, R. F., Gratzer, R., Lücke, A., & Püttmann, W. (2007a). Relations of petrographical and geochemical parameters in the middle Miocene Lavanttal lignite (Austria). International Journal of Coal Geology, 70, 325–349.CrossRefGoogle Scholar
  11. Bechtel, A., Sachsenhofer, R. F., Markic, M., Gratzer, R., Lucke, A., & Puttmann, W. (2003). Paleoenvironmental implications from biomarker and stable isotope investigations on the Pliocene Velenje lignite seam (Slovenia). Organic Geochemistry, 34, 1277–1298.CrossRefGoogle Scholar
  12. Bechtel, A., Widera, M., Sachsenhofer, R. F., Gratzer, R., Lücke, A., & Woszczyk, M. (2007b). Biomarker and stable carbon isotope systematics of fossil wood from the second Lusatian lignite seam of the Lubstów deposit (Poland). Organic Geochemistry, 38, 1850–1864.CrossRefGoogle Scholar
  13. Bhandari, A. (1999). Phanerozoic stratigraphy of western Rajasthan India: A review. In P. Kataria (Ed.), Geology of Rajasthan: Status and perspective (pp. 126–174). Udaipur: MLS University.Google Scholar
  14. Bhattacharya, S., & Dutta, S. (2015). Neoproterozoic-Early Cambrian biota and ancient niche: A synthesis from molecular markers and palynomorphs from Bikaner–Nagaur-Nagaur Basin, western India. Precambrian Research, 266, 361–374.CrossRefGoogle Scholar
  15. BIS. (2003). Methods of test for coal and coke (2nd revision of IS: 1350). Part I, Proximate analysis. Bureau of Indian Standard (pp. 1–29).Google Scholar
  16. Calder, J. H., Gibling, M. R., & Mukhopadhyay, P. K. (1991). Peat formation in a Westphalian B piedmont setting, Cumberland basin, Nova Scotia: Implications for the maceral-based interpretation of rheotrophic and raised paleomires. Contribution series No. 91-002.Google Scholar
  17. Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., & Tao, X. (2015). Applications of micro-Fourier transform infrared spectroscopy (FTIR) in the geological sciences—A review. International Journal of Molecular Sciences, 16(12), 30223–30250.CrossRefGoogle Scholar
  18. Chen, Z., Jiang, C., Lavoie, D., & Reyes, J. (2016). Model-assisted Rock-Eval data interpretation for source rock evaluation: Examples from producing and potential shale gas resource plays. International Journal of Coal Geology, 165, 290–302.CrossRefGoogle Scholar
  19. Chou, C. L. (2012). Sulfur in coals: A review of geochemistry and origins. International Journal of Coal Geology, 100, 1–13.CrossRefGoogle Scholar
  20. Choudhury, R., Saikia, J., & Saikia, B. K. (2017). Mineralogical and ash geochemical studies of coal-mine shale and its hydrocarbon potential: A case study of shale from Makum coalfield, Northeast India. Journal of Geological Society of India, 90(3), 329–334.CrossRefGoogle Scholar
  21. Dai, S., Ren, D., Tang, Y., Yue, M., & Hao, L. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61, 119–137.CrossRefGoogle Scholar
  22. Diessel, C. F. K. (1986). On the correlation between coal facies and depositional environments. In Proceeding 20th symposium of department geology, University of New Castle, New South Wales (pp. 19–22).Google Scholar
  23. Diessel, C. F. K. (1992). Coal-bearing depositional systems. Berlin: Springer.CrossRefGoogle Scholar
  24. Đoković, N., Mitrović, D., Životić, D., Bechtel, A., Sachsenhofer, R. F., Matić, V., et al. (2018). Petrographical and organic geochemical study of the lignite from the Smederevsko Pomoravlje field (Kostolac Basin, Serbia). International Journal of Coal Geology, 195, 139–171.CrossRefGoogle Scholar
  25. Dutta, S., Mathews, R. P., Singh, B. D., Tripathi, S. K. M., Singh, A., Saraswati, P. K., et al. (2011). Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: Implications to depositional environment and hydrocarbon source potential. International Journal of Coal Geology, 85, 91–102.CrossRefGoogle Scholar
  26. Equeenuddin, S. M., Tripathy, S., Sahoo, P. K., & Ranjan, A. (2016). Geochemical characteristics and mode of occurrence of trace elements in coal at West Bokaro coalfield. International Journal of Coal Science & Technology, 3(4), 399–406.CrossRefGoogle Scholar
  27. Erik, N. Y. (2011). Hydrocarbon generation potential and Miocene–Pliocene palaeoenvironment of the Kangal Basin (Central Anatolia, Turkey). Journal of Asian Earth Sciences, 42, 1146–1162.CrossRefGoogle Scholar
  28. Farrimond, P., Naidu, B. S., Burley, S. D., Dolson, J., Whiteley, N., & Kothari, V. (2015). Geochemical characterization of oils and their source rocks in the Barmer Basin, Rajasthan, India. Petroleum Geoscience, 21(4), 301–321.CrossRefGoogle Scholar
  29. Fowler, M. G., Gentzis, T., Goodarzi, F., & Foscolos, A. E. (1991). The petroleum potential of some Tertiary lignites from northern Greece as determined using pyrolysis and organic petrological techniques. Organic Geochemistry, 17, 805–826.CrossRefGoogle Scholar
  30. Galarraga, F., Reategui, K., Martïnez, A., Martínez, M., Llamas, J. F., & Márquez, G. (2008). V/Ni ratio as a parameter in palaeoenvironmental characterization of non-mature medium-crude oils from several Latin American basins. Journal of Petroleum Science and Engineering, 61, 9–14.CrossRefGoogle Scholar
  31. Ganz, H. H., & Kalkreuth, W. (1991). IR classification of kerogen type, thermal maturation, hydrocarbon potential and lithological characteristics. Journal of Southeast Asian Earth Sciences, 5(1–4), 19–28.CrossRefGoogle Scholar
  32. Georgakopoulos, A., Iordanidis, A., & Kapina, V. (2003). Study of low rank Greek coals using FTIR spectroscopy. Energy Sources, 25, 995–1005.CrossRefGoogle Scholar
  33. Guo, Q., Littke, R., & Zieger, L. (2018). Petrographical and geochemical characterization of sub-bituminous coals from mines in the Cesar-Ranchería Basin, Colombia. International Journal of Coal Geology, 191, 66–79.CrossRefGoogle Scholar
  34. Hakimi, M. H., Abdullah, W. H., Sia, S. G., & Makeen, Y. M. (2013). Organic geochemical and petrographic characteristics of Tertiary coals in the northwest Sarawak, Malaysia: Implications for palaeoenvironmental conditions and hydrocarbon generation potential. Marine and Petroleum Geology, 48, 31–46.CrossRefGoogle Scholar
  35. Hasiah, A. W. (1999). Oil-generating potential of Tertiary coals and other organic-rich sediments of the Nyalau Formation, onshore Sarawak. Journal of Asian Earth Sciences, 17, 255–267.CrossRefGoogle Scholar
  36. Hunt, J. H. (1996). Petroleum geology and geochemistry (2nd ed., p. 743). New York: Freeman.Google Scholar
  37. International Committee for Coal and Organic Petrology. (1993). International handbook of coal petrography, 3rd Supplement to 2nd edition. Newcastle upon Tyne: University of Newcastle upon Tyne.Google Scholar
  38. International Committee for Coal and Organic Petrology. (2001). The new inertinite classification (ICCP System 1994). Fuel, 80, 459–471.CrossRefGoogle Scholar
  39. International Committee for Coal and Organic Petrology. (2005). Classification of huminite (ICCP System 1994). International Journal of Coal Geology, 62, 85–106.CrossRefGoogle Scholar
  40. International Committee for Coal and Organic Petrology. (2017). Classification of liptinite (ICCP System 1994). International Journal of Coal Geology, 169, 40–61.CrossRefGoogle Scholar
  41. ISO 7404-5. (2009). Methods for the petrographic analysis of bituminous coal and anthracite—Part 5: Methods of determining microscopically the reflectance of vitrinite (p. 11). Geneva: International Organization for Standardization ISO.Google Scholar
  42. Johnston, M. N., Eble, C. F., O’Keefe, J. M., Freeman, R. L., & Hower, J. C. (2017). Petrology and palynology of the Middle Pennsylvanian Leatherwood coal bed, Eastern Kentucky: Indications for depositional environments. International Journal of Coal Geology, 181, 23–38.CrossRefGoogle Scholar
  43. Kalkreuth, W., Kotis, T., Papanicolaou, C., & Kokkinakis, P. (1991). The geology and coal petrology of a Miocene lignite profile at Meliadi Mine Katerini, Greece. International Journal of Coal Geology, 17, 51–67.CrossRefGoogle Scholar
  44. Karayiğit, Aİ., Littke, R., Querol, X., Jones, T., Oskay, R. G., & Christanis, K. (2017). The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. International Journal of Coal Geology, 173, 110–128.CrossRefGoogle Scholar
  45. Koukouzas, N., Kalaitzidis, S. P., & Ward, C. R. (2010). Organic petrographical, mineralogical and geochemical features of the Achlada and Mavropigi lignite deposits, NW Macedonia, Greece. International Journal of Coal Geology, 83, 387–395.CrossRefGoogle Scholar
  46. Kumar, M., Spicer, R. A., Spicer, T. E., Shukla, A., Mehrotra, R. C., & Monga, P. (2016). Palynostratigraphy and palynofacies of the early Eocene Gurha lignite mine, Rajasthan, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 98–108.CrossRefGoogle Scholar
  47. Littke, R., & Leythaeuser, D. (1993). Migration of oil and gas in coals. In B. E. Law & D. D. Rice (Eds.), Hydrocarbons from coal (Vol. 38, pp. 219–236). Tulsa: American Association of Petroleum Geologist.Google Scholar
  48. Longbottom, T. L., Hockaday, W. C., Boling, K. S., Li, G., Letourmy, Y., Dong, G., et al. (2016). Organic structural properties of kerogen as predictors of source rock type and hydrocarbon potential. Fuel, 184, 792–798.CrossRefGoogle Scholar
  49. Makeen, Y. M., Abdullah, W. H., & Hakimi, M. H. (2015). The origin, type and preservation of organic matter of the Barremiane Aptian organic-rich shales in the Muglad Basin, Southern Sudan, and their relation to paleoenvironmental and paleoclimate conditions. Marine and Petroleum Geology, 65, 187–197.CrossRefGoogle Scholar
  50. Mohialdeen, M. J., & Raza, S. M. (2013). Inorganic geochemical evidence for the depositional facies associations of the Upper Jurassic Chia Gara Formation in NE Iraq. Arabian Journal of Geoscience, 6, 4755–4770.CrossRefGoogle Scholar
  51. Mukherjee, A. K., Alum, M. M., Mazumdar, S. K., Haque, R., & Gowrisankaran, S. (1992). Physico-chemical properties and petrographic characteristics of the Kapurdi lignite deposit, Barmer Basin, Rajasthan, India. International Journal of Coal Geology, 21, 31–44.CrossRefGoogle Scholar
  52. Mukhopadhyay, P. (1989). Organic petrography and organic geochemistry of Tertiary Coals from Texas in relation to depositional environment and hydrocarbon generation. Report of Investigations, Bureau of Economic Geology, Texas (pp. 118).Google Scholar
  53. Mukhopadhyay, P. K. (1986). Petrography of selected Wilcox and Jockson Group lignites from Tertiary of Texas. In: R. B. Finkelman & D. J. Casagrade (Eds.), Geology of gulf coast lignites, 1986, Annual meeting, Geological Society of America, Coal Geology Division, Field Trip (pp. 126–145).Google Scholar
  54. Mukhopadhyay, P. K., Wade, J. A., & Kruge, M. A. (1995). Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotion Basin, Canada. Organic Geochemistry, 22, 85–104.CrossRefGoogle Scholar
  55. O’Keefe, J. M. K., Bechtel, A., Christanis, K., Dai, S., Di Michele, W. A., Eble, C. F., et al. (2013). On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 118, 58–87.CrossRefGoogle Scholar
  56. Oikonomopoulos, I., Perraki, Th, & Tougiannidis, N. (2010). FTIR study of two different lignite lithotypes from neocene Achlada lignite deposits in NW Greece. Bulletin of the Geological Society of Greece, 43, 2284–2293.CrossRefGoogle Scholar
  57. Oskay, R. G., Christanis, K., Inaner, H., Salman, M., & Taka, M. (2016). Palaeoenvironmental reconstruction of the eastern part of the Karapınar-Ayrancı coal deposit (Central Turkey). International Journal of Coal Geology, 163, 100–111.CrossRefGoogle Scholar
  58. Pareek, H. S. (1981). Basin configuration and sedimentary stratigraphy of western Rajasthan. Journal of Geological Society of India, 22, 517–527.Google Scholar
  59. Pareek, H. S. (1984). Pre-quaternary geology and mineral resources of northwestern Rajasthan (Vol. 115). Calcutta: Memoir Geological Survey of India.Google Scholar
  60. Paul, S., & Dutta, S. (2016). Terpenoid composition of fossil resins from western India: New insights into the occurrence of resin-producing trees in Early Paleogene equatorial rainforest of Asia. International Journal of Coal Geology, 167, 65–74.CrossRefGoogle Scholar
  61. Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry. In L. B. Magoon & W. G. Dow (Eds.), The petroleum system—From source to trap (Vol. 60, pp. 93–120). Tulsa: Memoir American Association of Petroleum Geologists.Google Scholar
  62. Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  63. Prasad, V., Farooqui, A., Tripathi, S. K. M., Garg, R., & Thakur, B. (2009). Evidence of late Palaeocene-early Eocene equatorial rain forest refugia in southern Western Ghats, India. Journal of Biosciences, 34, 777–797.CrossRefGoogle Scholar
  64. Radhwani, M., Bechtel, A., Singh, V. P., Singh, B. D., & Mannaï-Tayech, B. (2018). Petrographic, palynofacies and geochemical characteristics of organic matter in the Saouef Formation (NE Tunisia): Origin, paleoenvironment, and economic significance. International Journal of Coal Geology, 187, 114–130.CrossRefGoogle Scholar
  65. Raju, S. V., & Mathur, N. (2013). Rajasthan lignite as a source of unconventional oil. Current Science, 104(6), 752–757.Google Scholar
  66. Rimmer, S. M. (2004). Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chemical Geology, 206, 373–391.CrossRefGoogle Scholar
  67. Roy, A. B., & Jakhar, S. R. (2002). Geology of Rajasthan (northwest India), precambrian to Recent (p. 421). Jodhpur: Scientific Publishers (India).Google Scholar
  68. Roy, D. K., & Roser, B. P. (2013). Climatic control on the composition of Carboniferous–Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Research, 23, 1163–1171.CrossRefGoogle Scholar
  69. Shivanna, M., Singh, A., Singh, B. D., Singh, V. P., Matthews, R. P., & Souza, P. A. (2016). Peat biomass degradation: Evidence from fungal and faunal activity in carbonized wood from the Eocene sediments of western India. Palaeoworld, 26(3), 531–542.CrossRefGoogle Scholar
  70. Shivanna, M., & Singh, H. (2016). Depositional environment and hydrocarbon potential of marginal marine sediments of Eocene from western India: A palynofacies perspective. Marine and Petroleum Geology, 73, 311–321.CrossRefGoogle Scholar
  71. Shukla, A., Mehrotra, R. C., Spicer, R. A., Spicer, T. E., & Kumar, M. (2014). Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: Evidence from the Gurha Mine, Rajasthan, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 412, 187–198.CrossRefGoogle Scholar
  72. Singh, P. K. (2012). Petrological and geochemical considerations to predict oil potential of Rajpardi and Vastan Lignite deposits of Gujarat, Western India. Journal of the Geological Society of India, 80(6), 759–770.CrossRefGoogle Scholar
  73. Singh, A. V., Bhargava, P. K., Singh, R., & Menaria, K. L. (2012). The selective oil agglomeration of combustibles in fines of low grade lignite of Barmer Rajasthan (India). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34(16), 1491–1496.CrossRefGoogle Scholar
  74. Singh, A. K., & Kumar, A. (2017a). Liquefaction behavior of Eocene lignites of Nagaur Basin, Rajasthan, India: A petrochemical approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(15), 1686–1693.Google Scholar
  75. Singh, A. K., & Kumar, A. (2017b). Petro-chemical characterisation and depositional paleoenvironment of lignite deposits of Nagaur, Western Rajasthan, India. Environmental Earth Science, 76(20), 692.CrossRefGoogle Scholar
  76. Singh, A. K., & Kumar, A. (2018a). Petrographic and Geochemical study of Gurha lignites, Bikaner Basin, Rajasthan, India: Implications for thermal maturity, hydrocarbon generation potential and paleodepositional environment. Journal of Geological Society of India, 92(1), 27–35.CrossRefGoogle Scholar
  77. Singh, A. K., & Kumar, A. (2018b). Organic geochemical characteristics of Nagaur lignites, Rajasthan, India and their implication on thermal maturity and paleoenvironment. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(15), 1842–1851.CrossRefGoogle Scholar
  78. Singh, A. K., Kumar, A., & Hakimi, M. H. (2018). Organic geochemical and petrographical characteristics of the Nagaur lignites, Western Rajasthan, India and their relevance to liquid hydrocarbon generation. Arabian Journal of Geosciences, 11, 406.CrossRefGoogle Scholar
  79. Singh, P. K., Rajak, P. K., Singh, M. P., Naik, A. S., Singh, V. K., Raju, S. V., et al. (2015). Environmental Geochemistry of selected elements in lignite from Barsingsar and Gurha Mines of Rajasthan, Western India. Journal of Geological Society of India, 86(1), 23–32.CrossRefGoogle Scholar
  80. Singh, P. K., Rajak, P. K., Singh, V. K., Singh, M. P., Naik, A. S., & Raju, S. V. (2016a). Studies on thermal maturity and hydrocarbon potential of lignites of Bikaner–Nagaur–Nagaur basin, Rajasthan. Energy Exploration & Exploitation, 34(1), 140–157.CrossRefGoogle Scholar
  81. Singh, A., Shivanna, M., Mathews, R. P., Singh, B. D., Singh, H., Singh, V. P., et al. (2017a). Paleoenvironment of Eocene lignite bearing succession from Bikaner–Nagaur-Nagaur Basin, western India: Organic petrography, palynology, palynofacies and geochemistry. International Journal of Coal Geology, 181, 87–102.CrossRefGoogle Scholar
  82. Singh, V. P., Singh, B. D., Mathews, R. P., Singh, A., Mendhe, V. A., Singh, P. K., et al. (2017b). Investigation on the lignite deposits of Surkha mine (Saurashtra Basin, Gujarat), western India: Their depositional history and hydrocarbon generation potential. International Journal of Coal Geology, 183, 78–99.CrossRefGoogle Scholar
  83. Singh, P. K., Singh, V. K., Rajak, P. K., Singh, M. P., Naik, A. S., Raju, S. V., et al. (2016b). Eocene lignites from Cambay basin, Western India: An excellent source of hydrocarbon. Geoscience Frontiers, 7(5), 811–819.CrossRefGoogle Scholar
  84. Singh, P. K., Singh, M. P., & Singh, A. K. (2010). Petro-chemical characterization and evolution of Vastan Lignite, Gujarat. India. International Journal of Coal Geology, 82(1–2), 1–16.Google Scholar
  85. Singh, P. K., Singh, M. P., Singh, A. K., Arora, M., & Naik, A. S. (2013). Prediction of liquefaction behavior of East Kalimantan coals of Indonesia: An appraisal through petrography of selected coal samples. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, Taylor & Francis, 35, 1728–1740.CrossRefGoogle Scholar
  86. Singh, V. P., Singh, B. D., Singh, A., Singh, M. P., Mathews, R. P., Dutta, S., et al. (2017c). Depositional palaeoenvironment and economic potential of Khadsaliya lignite deposits (Saurashtra Basin), western India: Based on petrographic, palynofacies and geochemical characteristics. International Journal of Coal Geology, 171, 223–242.CrossRefGoogle Scholar
  87. Stock, A. T., Littke, R., Lucke, A., Zieger, L., & Thielemann, T. (2016). Miocene depositional environment and climate in western Europe: The lignite deposits of the Lower Rhine Basin, Germany. International Journal of Coal Geology, 157, 2–18.CrossRefGoogle Scholar
  88. Sun, T., Wang, C., Duan, Y., Li, Y., & Hu, B. (2014). The organic geochemistry of the Eocene Oligocene black shales from the Lunpola Basin, central Tibet. Journal of Asian Earth Sciences, 79, 468–476.CrossRefGoogle Scholar
  89. Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and palaeoclimate. I. Framework mineralogy. Journal of Sedimentary Research, 56(3), 329–345.Google Scholar
  90. Sykorova, I., Pickel, W., Christanis, K., Wolt, M., Taylor, G. H., & Flores, D. (2005). Classification of huminite-ICCP system 1994. International Journal of Coal Geology, 62, 85–106.CrossRefGoogle Scholar
  91. Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic petrology. Berlin: Borntraeger.Google Scholar
  92. Teichmüller, M. (1974). Generation of petroleum-like substances in coal seams as seen under the microscope. In B. Tissot & F. Bienner (Eds.), Advances in organic geochemistry 1973 (pp. 321–348). Paris: Editions Technip.Google Scholar
  93. Thomas, L. (2002). Coal geology (p. 89). Chichester: Wiley.Google Scholar
  94. Tripathi, S. K. M., Kumar, M., & Srivastava, D. (2009). Palynology of lower palaeogene (Thanetian-Ypresian) coastal deposits from the Barmer Basin (Akli Formation, Western Rajasthan, India): Palaeoenvironmental and palaeoclimatic implications. Geologica Acta, 7(1), 147–160.Google Scholar
  95. Varma, A. K., Biswal, S., Hazra, B., Mendhe, V. A., Misra, S., Samad, S. K., et al. (2015a). Petrographic characteristics and methane sorption dynamics of coal and shaly-coal samples from Ib Valley Basin, Odisha, India. International Journal of Coal Geology, 141, 51–62.CrossRefGoogle Scholar
  96. Varma, A. K., Hazra, B., Chinara, I., Mendhe, V. A., & Dayal, A. M. (2015b). Assessment of organic richness and hydrocarbon generation potential of Raniganj basin shales, West Bengal, India. Marine and Petroleum Geology, 59, 480–490.CrossRefGoogle Scholar
  97. Wang, S. H., & Griffiths, P. R. (1985). Resolution enhancement of diffuse reflectance ir spectra of coals by Fourier self-deconvolution: 1. CH stretching and bending modes. Fuel, 64(2), 229–236.CrossRefGoogle Scholar
  98. Xu, S. C., Liub, Z. J., Zhang, P., Boak, J. M., Liu, R., & Meng, Q. T. (2016). Characterization of depositional conditions for lacustrine oil shales in the Eocene Jijuntun Formation, Fushun Basin, NE China. International Journal of Coal Geology, 167, 10–30.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  1. 1.Department of Petroleum Engineering and Geological ScienceRajiv Gandhi Institute of Petroleum TechnologyJais, AmethiIndia

Personalised recommendations