Natural Resources Research

, Volume 28, Issue 4, pp 1485–1503 | Cite as

Mineralogy and Geochemistry of Rural Road Dust and Nearby Mine Tailings: A Case of Ignored Pollution Hazard from an Abandoned Mining Site in Semi-arid Zone

  • Rafael Del Rio-Salas
  • Yessi Ayala-Ramírez
  • René Loredo-Portales
  • Francisco Romero
  • Francisco Molina-Freaner
  • Christian Minjarez-Osorio
  • Teresa Pi-Puig
  • Lucas Ochoa–Landín
  • Verónica Moreno-RodríguezEmail author
Original Paper


Abandoned mine tailings are considered as one of the main sources of potentially toxic elements. Because of the lack of supervision, particularly from small-scale or artisanal mining, abandoned tailings have become part of the natural landscape, especially in rural areas from developing countries. Abandoned mine tailings represent a latent problem in terms of the possible affectations to human health and the environment. An example of this is the small-sized (~ 200 × ~ 300 m) abandoned mine tailings located ~ 500 m south of San Felipe de Jesus town, Sonora, in northwestern Mexico. The mineralogy determined in mine tailings samples consists of divalent hydrated metal sulfates (rozenite, starkeyite, kieserite, szomolnokite and epsomite), trivalent hydrated metal sulfates (coquimbite) and divalent-trivalent hydrated sulfates (copiapite), which are highly soluble efflorescent minerals associated with acid mine drainage. Rozenite was detected in road dust samples, evidencing that dust is dispersed and transported from abandoned residues. In order to assess the possible impact of the tailings (un-oxidized, oxidized, efflorescent minerals), concentrations of potentially toxic elements (total and soluble fractions) in samples from mine tailings, unpaved road soils and road dust from San Felipe de Jesús were determined. Average concentrations (ppm) of potential toxic elements in mine tailings samples ranged from 16,756–1306 (As), 665–98 (Cd), 5691–338 (Cu), 14,162–832 (Pb), 492–82 (Sb), 176,219–8285 (Zn). Enrichment factors determined in mine tailings, agricultural soils and road dust exhibit similar patterns, differing only in level of enrichment, which also confirms the dispersion of potentially toxic elements toward surroundings. Contamination Index (CI) and Hazard Average Quotient (HAQ) were calculated in mine tailings to assess potential contamination associated with potentially toxic elements dispersed by aeolian and/or hydric processes, respectively. The CI values suggest that mine tailing materials have a high potential for polluting soils and sediments. Semi-arid conditions of the region favor the suspension and transport of contaminants, potentially affecting surrounding agricultural fields and population. The HAQ values from efflorescence minerals and mine tailings indicate that potential of toxicity is very high, and might affect the quality of water (groundwater and surficial) in the region. CI and HAQ can provide a good estimation of pollution hazards associated with the abandoned mine tailings in the San Felipe de Jesús area.


Abandoned mine tailings Potential contamination Efflorescence crusts Dispersion Semi-arid region 



This investigation was partially supported by Project IA209616 (PAPIIT-UNAM) Granted to R. Del Rio-Salas. We are thankful to J.F. Martínez Rodríguez, A. Vázquez-Salgado and L.G. Martínez-Jardines for laboratory support.


  1. Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238.Google Scholar
  2. Acosta, J. A., Faz, A., Martínez-Martínez, S., & Arocena, J. M. (2011). Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, southeast Spain). Applied Geochemistry, 26(3), 405–414.Google Scholar
  3. Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals. Springer, New York, 2001, 888.Google Scholar
  4. Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 14(12–13), 1139–1145.Google Scholar
  5. Alberruche del Campo, M. E., Arranz-González, J. C., Rodríguez-Pacheco, R., Vadillo-Fernández, L., Rodríguez-Gómez, V., & Fernández-Naranjo, F. J. (2014). Manual para la evaluación de riesgos de instalaciones de residuos de industrias extractivas cerradas o abandonadas. Madrid: Instituto Geológico Minero de España-Ministerio de Agricultura, Alimentación y Medio Ambiente. ISBN 978-84-7840-934-1.Google Scholar
  6. Anawar, H. M. (2015). Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. Journal of Environmental Management, 158, 111–121.Google Scholar
  7. Arranz-González, J. C., Rodríguez-Gómez, V., del Campo, E. A., Vadillo-Fernández, L., Fernández-Naranjo, F. J., Reyes-Andrés, J., et al. (2016). A methodology for ranking potential pollution caused by abandoned mining wastes: Application to sulfide mine tailings in Mazarrón (Southeast Spain). Environmental Earth Sciences, 75(8), 1–10.Google Scholar
  8. Badilla-Ohlbaum, R., Ginocchio, R., Rodríguez, P. H., Céspedes, A., González, S., Allen, H. E., et al. (2001). Relationship between soil copper content and copper content of selected crop plants in central Chile. Environmental Toxicology and Chemistry, 20(12), 2749–2757.Google Scholar
  9. Bech, J., Duran, P., Roca, N., Poma, W., Sánchez, I., Barceló, J., et al. (2012). Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. Journal of Geochemical Exploration, 113, 106–111.Google Scholar
  10. Benvenuti, M., Mascaro, I., Corsini, F., Lattanzi, P., Parrini, P., & Tanelli, G. (1997). Mine waste dumps and heavy metal pollution in abandoned mining district of Boccheggiano (Southern Tuscany, Italy). Environmental Geology, 30(3–4), 238–243.Google Scholar
  11. Birth, G. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. Coastal GIS, 14.Google Scholar
  12. Bish, D. L., & Post, J. E. (1989). Modern powder diffraction, reviews in mineralogy. In P. H. Ribbe (Ed.), (Vol. 20). Mineralogical Society of America ISBN: 0-939950-24-3.Google Scholar
  13. Buhrke, V. E., Jenkins, R., Smith, D. K., & Kingsley, D. (1998). Practical guide for the preparation of specimens for x-ray fluorescence and x-ray diffraction analysis. New York: Wiley-VCH.Google Scholar
  14. Cai, L. M., Wang, Q. S., Wen, H. H., Luo, J., & Wang, S. (2019). Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicology and Environmental Safety, 168, 184–191.Google Scholar
  15. Candeias, C., Melo, R., Ávila, P. F., da Silva, E. F., Salgueiro, A. R., & Teixeira, J. P. (2014). Heavy metal pollution in mine–soil–plant system in S. Francisco de Assis-Panasqueira mine (Portugal). Applied Geochemistry, 44, 12–26.Google Scholar
  16. Çevik, F., Göksu, M. Z. L., Derici, O. B., & Fındık, Ö. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152, 309–317.Google Scholar
  17. Chukwu, A., & Oji, K. K. (2018). Assessment of Pb, Zn, As, Ni, Cu, Cr and Cd in Agricultural Soils around Settlements of Abandoned Lead-Zinc Mine in Mkpuma Ekwoku, South-eastern, Nigeria. Journal of Applied Sciences and Environmental Management, 22(9), 1485–1488.Google Scholar
  18. Concas, A., Ardau, C., Cristini, A., Zuddas, P., & Cao, G. (2006). Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. Chemosphere, 63(2), 244–253.Google Scholar
  19. Corrales-Pérez, D., & Romero, F. M. (2018). Adecuaciones para mejorar la aplicación del método D3987-85 en la extracción de EPT de los antiguos residuos mineros El Fraile, Guerrero, México. Revista Mexicana de Ciencias Geológicas, 35(1), 1–17.Google Scholar
  20. Council, E. (1998). European Council of the European Union. Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal of the European Community, L330, 32–54.Google Scholar
  21. Csavina, J., Field, J., Taylor, M. P., Gao, S., Landázuri, A., Betterton, E. A., et al. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58–73.Google Scholar
  22. de Gregori, I., Fuentes, E., Rojas, M., Pinochet, H., & Potin-Gautier, M. (2003). Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. Journal of Environmental Monitoring, 5(2), 287–295.Google Scholar
  23. De la O-Villanueva, M., Meza-Figueroa, D., R, M., Moreno, D., Gomez-Alvarez, A., Del Rio-Salas, R., et al. (2013). Procesos erosivos en jales de la presa I de Nacozari de García, Sonora y su efecto en la dispersión de contaminantes. Boletín de la Sociedad Geológica Mexicana, 65, 27–38.Google Scholar
  24. Esmaeili, A., Moore, F., Keshavarzi, B., Jaafarzadeh, N., & Kermani, M. (2014). A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena, 121, 88–98.Google Scholar
  25. Espinoza-Madero, Z. (2012). Impacto ambiental producido por los jales de San Felipe de Jesus. Unpublished Bachelor thesis. Sonora: Departamento de Geología, Universidad de Sonora, Hermosillo.Google Scholar
  26. Feng, H., Han, X., Zhang, W., & Yu, L. (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin, 49(11–12), 910–915.Google Scholar
  27. García-Giménez, R., & Jiménez-Ballesta, R. (2017). Mine tailings influencing soil contamination by potentially toxic elements. Environmental Earth Sciences, 76(1), 51.Google Scholar
  28. Garrido, T., Mendoza, J., & Arriagada, F. (2012). Changes in the sorption, desorption, distribution, and availability of copper, induced by application of sewage sludge on Chilean soils contaminated by mine tailings. Journal of Environmental Sciences, 24(5), 912–918.Google Scholar
  29. Ghrefat, H. A., Abu-Rukah, Y., & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environmental Monitoring and Assessment, 178(1–4), 95–109.Google Scholar
  30. Gieré, R., Sidenko, N. V., & Lazareva, E. V. (2003). The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18(9), 1347–1359.Google Scholar
  31. Hakkou, R., Benzaazoua, M., & Bussière, B. (2008). Acid mine drainage at the abandoned Kettara mine (Morocco): 1. Environmental characterization. Mine Water and the Environment, 27(3), 145–159.Google Scholar
  32. Hammarstrom, J. M., Seal Ii, R. R., Meier, A. L., & Kornfeld, J. M. (2005). Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments. Chemical Geology, 215(1–4), 407–431.Google Scholar
  33. Huang, S., Wang, M., Wu, J., Li, Q., Yang, J., Guo, L., et al. (2018). The exploration and practice on soil environmental protection in the process of rapid urbanization of the megacity Shanghai. In Twenty years of research and development on soil pollution and remediation in China (pp. 133–147). Springer: Singapore.Google Scholar
  34. Huaranga Moreno, F., Méndez García, E., Quilcat León, V., & Huaranga Arévalo, F. (2012). Contaminación por metales pesados en la cuenca del río Moche, 1980–2010, La Libertad-Perú. Scientia Agropecuaria, 3(3), 235–247.Google Scholar
  35. Hudson-Edwards, K. A., Jamieson, H. E., & Lottermoser, B. G. (2011). Mine wastes: Past, present, future. Elements, 7(6), 375–380.Google Scholar
  36. Iii, C. A. C., & Trahan, M. K. (1999). Limestone drains to increase pH and remove dissolved metals from acidic mine drainage. Applied Geochemistry, 14(5), 581–606.Google Scholar
  37. INEGI. (2010). Censo de Población y Vivienda 2010. Principales resultados por localidad (ITER).Google Scholar
  38. Kaushik, A., Kansal, A., Kumari, S., & Kaushik, C. P. (2009). Heavy metal contamination of river Yamuna, Haryana, India: Assessment by metal enrichment factor of the sediments. Journal of Hazardous Materials, 164(1), 265–270.Google Scholar
  39. Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221, 82–90.Google Scholar
  40. Kossoff, D., Dubbin, W. E., Alfredsson, M., Edwards, S. J., Macklin, M. G., & Hudson-Edwards, K. A. (2014). Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Applied Geochemistry, 51, 229–245.Google Scholar
  41. Li, K., Liang, T., Wang, L., & Yang, Z. (2015). Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China. Journal of Geographical Sciences, 25(12), 1439–1451.Google Scholar
  42. Lin, J., Chen, N., Nilges, M. J., & Pan, Y. (2013). Arsenic speciation in synthetic gypsum (CaSO42H2O): A synchrotron XAS, single-crystal EPR, and pulsed ENDOR study. Geochimica et Cosmochimica Acta, 106, 524–540.Google Scholar
  43. Lin, M., Gui, H., Wang, Y., & Peng, W. (2017). Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China. Environmental Science and Pollution Research, 24(2), 1987–1998.Google Scholar
  44. Lindsay, M. B., Moncur, M. C., Bain, J. G., Jambor, J. L., Ptacek, C. J., & Blowes, D. W. (2015). Geochemical and mineralogical aspects of sulfide mine tailings. Applied Geochemistry, 57, 157–177.Google Scholar
  45. Loredo-Portales, R., Cruz-Jiménez, G., Castillo-Michel, H., Aquilanti, G., Rocha-Amador, D. O., Vogel-Mikus, K., et al. (2017). Synchrotron based study of As mobility and speciation in tailings from a mining site in Mexico. Journal of Environmental Chemical Engineering, 5(1), 1140–1149.Google Scholar
  46. Loska, K., Wiechula, D., Barska, B., Cebula, E., & Chojnecka, A. (2003). Assessment of arsenic enrichment of cultivated soils in Southern Poland. Polish Journal of Environmental Studies, 12(2), 187–192.Google Scholar
  47. Mahecha-Pulido, J. D., Trujillo-González, J. M., & Torres-Mora, M. A. (2015). Contenido de metales pesados en suelos agrícolas de la región del Ariari. Departamento del Meta. Orinoquia, 19(1), 118–122.Google Scholar
  48. Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388.Google Scholar
  49. Marrugo-Negrete, J. L., Urango-Cardenas, I. D., Núñez, S. M. B., & Díez, S. (2014). Atmospheric deposition of heavy metals in the mining area of the San Jorge river basin, Colombia. Air Quality, Atmosphere and Health, 7(4), 577–588.Google Scholar
  50. Martín-Crespo, T., Gómez-Ortiz, D., Martín-Velázquez, S., Martínez-Pagán, P., De Ignacio, C., Lillo, J., et al. (2018). Geoenvironmental characterization of unstable abandoned mine tailings combining geophysical and geochemical methods (Cartagena-La Union district, Spain). Engineering Geology, 232, 135–146.Google Scholar
  51. Mead, R. D., Kesler, S. E., Foland, K. A., & Jones, L. M. (1988). Relationship of Sonoran tungsten mineralization to the metallogenic evolution of Mexico. Economic Geology, 83(8), 1943–1965.Google Scholar
  52. MEF. (2007). Ministry of the Environment, Finland. Government Decree on the Assessment of Soil Contamination and Remediation Needs (214/2007, March 1, 2007).Google Scholar
  53. Mendez, M. O., & Maier, R. M. (2008). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Bio/Technology, 7(1), 47–59.Google Scholar
  54. Meza-Figueroa, D., Maier, R. M., de la O-Villanueva, M., Gómez-Alvarez, A., Moreno-Zazueta, A., Rivera, J., et al. (2009). The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere, 77(1), 140–147.Google Scholar
  55. Micó, C., Peris, M., Recatalá, L., & Sánchez, J. (2007). Baseline values for heavy metals in agricultural soils in an European Mediterranean region. Science of the Total Environment, 378(1–2), 13–17.Google Scholar
  56. Mitsunobu, S., Harada, T., & Takahashi, Y. (2006). Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environmental Science and Technology, 40(23), 7270–7276.Google Scholar
  57. Molamohyeddin, N., Ghafourian, H., & Sadatipour, S. M. (2017). Contamination assessment of mercury, lead, cadmium and arsenic in surface sediments of Chabahar Bay. Marine Pollution Bulletin, 124(1), 521–525.Google Scholar
  58. Moreno-Rodríguez, V., Del Rio-Salas, R., Adams, D. K., Ochoa-Landin, L., Zepeda, J., Gómez-Álvarez, A., et al. (2015). Historical trends and sources of TSP in a Sonoran desert city: Can the North America Monsoon enhance dust emissions? Atmospheric Environment, 110, 111–121.Google Scholar
  59. Najmeddin, A., Keshavarzi, B., Moore, F., & Lahijanzadeh, A. (2018). Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environmental Geochemistry and Health, 40(4), 1187–1208.Google Scholar
  60. Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96(2–3), 183–193.Google Scholar
  61. Obiora, S. C., Chukwu, A., & Davies, T. C. (2016). Heavy metals and health risk assessment of arable soils and food crops around Pb–Zn mining localities in Enyigba, southeastern Nigeria. Journal of African Earth Sciences, 116, 182–189.Google Scholar
  62. Pan, L., Wang, Y., Ma, J., Hu, Y., Su, B., Fang, G., et al. (2018). A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environmental Science and Pollution Research, 25(2), 1055–1069.Google Scholar
  63. Panagos, P., Van Liedekerke, M., Yigini, Y., & Montanarella, L. (2013). Contaminated sites in Europe: Review of the current situation based on data collected through a European network. Journal of Environmental and Public Health, 2013, 158764.Google Scholar
  64. Plumlee, G. S., & Morman, S. A. (2011). Mine wastes and human health. Elements, 7(6), 399–404.Google Scholar
  65. Quispe, D., Pérez-López, R., Acero, P., Ayora, C., & Nieto, J. M. (2013). The role of mineralogy on element mobility in two sulfide mine tailings from the Iberian Pyrite Belt (SW Spain). Chemical Geology, 345, 119–129.Google Scholar
  66. Ramirez, O., de la Campa, A. S., Amato, F., Catacoli, R. A., Rojas, N. Y., & de la Rosa, J. (2018). Chemical composition and source apportionment of PM 10 at an urban background site in a high-altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 233, 142–155.Google Scholar
  67. Rashed, M. N. (2010). Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. Journal of Hazardous Materials, 178, 739–746.Google Scholar
  68. Reimann, C., & Caritat, P. D. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science and Technology, 34(24), 5084–5091.Google Scholar
  69. Reimann, C., & de Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337(1–3), 91–107.Google Scholar
  70. Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., & Rincón, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. Journal of Environmental Management, 90(2), 1106–1116.Google Scholar
  71. Rollinson, H. R. (2014). Using geochemical data: Evaluation, presentation, interpretation. London: Routledge.Google Scholar
  72. Romero, F. M., Armienta, M. A., & González-Hernández, G. (2007). Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. Applied Geochemistry, 22(1), 109–127.Google Scholar
  73. Romero, F. M., Armienta, M. A., Gutiérrez, M. E., & Villaseñor, G. (2008). Factores geológicos y climáticos que determinan la peligrosidad y el impacto ambiental de jales mineros. Revista internacional de contaminación ambiental, 24(2), 43–54.Google Scholar
  74. Sánchez-Bisquert, D., Castejón, J. M. P., & García-Fernández, G. (2017). The impact of atmospheric dust deposition and trace elements levels on the villages surrounding the former mining areas in a semi-arid environment (SE Spain). Atmospheric Environment, 152, 256–269.Google Scholar
  75. Santisteban, M., Grande, J. A., De la Torre, M. L., Valente, T., & Cerón, J. C. (2015). Acid mine drainage in semi-arid regions: The extent of the problem in the waters of reservoirs in the Iberian Pyrite Belt (SW Spain). Hydrology Research, 46(1), 156–167.Google Scholar
  76. Santos, A. E., Cruz-Ortega, R., Meza-Figueroa, D., Romero, F. M., Sanchez-Escalante, J. J., Maier, R. M., et al. (2017). Plants from the abandoned Nacozari mine tailings: Evaluation of their phytostabilization potential. PeerJ, 5, e3280.Google Scholar
  77. Sectretaría de Salud. (1994). Norma Oficial Mexicana 127. Salud ambiental, agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. México, DF.: Diario Oficial de la Federación DVIII 13, 18 de enero; 1996: 41.Google Scholar
  78. Technical Report. (2012). Technical report on resources San Felipe project Sonora. Mexico: Gustavson Associates LLC.Google Scholar
  79. SEMARNAT. (2004). Norma Oficial Mexicana 147. Establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio.Google Scholar
  80. SEMARNAT (2009). Norma Oficial Mexicana 157. Establece los elementos y procedimientos para instrumentar planes de manejo de residuos mineros. SEMARNAT.Google Scholar
  81. Sherlock, E. J., Lawrence, R. W., & Poulin, R. (1995). On the neutralization of acid rock drainage by carbonate and silicate minerals. Environmental Geology, 25(1), 43–54.Google Scholar
  82. Tang, Z., Chai, M., Cheng, J., Jin, J., Yang, Y., Nie, Z., et al. (2017). Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicology and Environmental Safety, 138, 83–91.Google Scholar
  83. Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309.Google Scholar
  84. USEPA. (1995). Method 9045C: Solid and waste pH. Test methods for evaluating solid wastes (SW–846). Washington, DC: Environmental Protection Agency Publication.Google Scholar
  85. USEPA. (2002). National recommended water quality criteria. EPA 822-R-02-047. Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  86. USEPA. (2007). Method 6200—Field portable X-ray florescence spectrometry for the determination of elemental concentrations in soil and sediment.Google Scholar
  87. USEPA. (2012). Drinking water standards and health advisories, 2012 Edition. EPA 822-S-12-001. Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  88. Veado, M. A. R. V., Arantes, I. A., Oliveira, A. H., Almeida, M. R. M. G., Miguel, R. A., Severo, M. I., et al. (2006). Metal pollution in the environment of Minas Gerais State-Brazil. Environmental Monitoring and Assessment, 117(1–3), 157–172.Google Scholar
  89. WHO. (1993). Guidelines for drinking-water quality (2nd ed., Vol. 1). Geneva: Recommendations.Google Scholar
  90. WHO. (2003). Antimony in drinking-water. Background document for development of WHO guidelines for drinking-water quality (WHO/SDE/WSH/03.04/74).Google Scholar
  91. Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environmental Pollution, 158(5), 1169–1181.Google Scholar
  92. Wu, J., Teng, Y., Lu, S., Wang, Y., & Jiao, X. (2014). Evaluation of soil contamination indices in a mining area of Jiangxi, China. PLoS ONE, 9(11), e112917.Google Scholar
  93. Yan-Feng, Z. H. A. O., Xue-Zheng, S. H. I., Huang, B., Dong-Sheng, Y. U., Hong-Jie, W. A. N. G., Wei-Xia, S. U. N., et al. (2007). Spatial distribution of heavy metals in agricultural soils of an industry-based Peri-Urban Area in Wuxi, China. Pedosphere, 17(1), 44–51.Google Scholar
  94. Zhang, H., Chen, J., Zhu, L., Yang, G., & Li, D. (2014). Anthropogenic mercury enrichment factors and contributions in soils of Guangdong Province, South China. Journal of Geochemical Exploration, 144, 312–319.Google Scholar
  95. Zhang, H., & Shan, B. (2008). Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region, China. Science of the Total Environment, 399, 113–120.Google Scholar
  96. Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—Weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54(6), 1051–1070.Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  • Rafael Del Rio-Salas
    • 1
    • 2
  • Yessi Ayala-Ramírez
    • 1
  • René Loredo-Portales
    • 3
  • Francisco Romero
    • 2
    • 4
  • Francisco Molina-Freaner
    • 1
  • Christian Minjarez-Osorio
    • 5
  • Teresa Pi-Puig
    • 2
    • 6
  • Lucas Ochoa–Landín
    • 7
  • Verónica Moreno-Rodríguez
    • 8
    Email author
  1. 1.Estación Regional del Noroeste, Instituto de GeologíaUniversidad Nacional Autónoma de MéxicoHermosilloMexico
  2. 2.Laboratorio Nacional de Geoquímica y Mineralogía-LANGEMMexico CityMexico
  3. 3.CONACYT-Estación Regional del Noroeste, Instituto de GeologíaUniversidad Nacional Autónoma de MéxicoHermosilloMexico
  4. 4.Departamento de Ciencias Ambientales y del Suelo Departamento de Geoquímica, Instituto de GeologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  5. 5.Department of Scientific and Technological ResearchUniversity of SonoraHermosilloMexico
  6. 6.Departamento de Procesos Litosféricos, Instituto de GeologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  7. 7.Departamento de Geología, División de Ciencias Exactas y NaturalesUniversidad de SonoraHermosilloMexico
  8. 8.Ingeniería en GeocienciasUniversidad Estatal de SonoraHermosilloMexico

Personalised recommendations