Advertisement

Natural Resources Research

, Volume 28, Issue 4, pp 1547–1573 | Cite as

Hydrocarbon Generation, In-Source Conversion of Oil to Gas and Expulsion: Petroleum System Modeling of the Duwi Formation, Gulf of Suez, Egypt

  • Mohammed A. AhmedEmail author
  • Omar A. Hegab
  • Ahmed Sh. Awadalla
  • Ali E. Farag
  • Saad Hassan
Original Paper
  • 185 Downloads

Abstract

A multiple forward 1D modeling approach on four wells in the Abu Rudeis-Sidri oil field has been performed in accordance with the plate tectonics and crustal development of the Gulf of Suez, Egypt. The current work intends to simulate the hydrocarbon generating capability, in-source conversion of oil to gas, expulsion and adsorption (retention) of marine sulfur-rich Duwi kerogen. The integration of log responses and organic geochemistry indicate mature organic-rich intervals that have been confirmed by the 1D model. The rifting phases and its associated thermal cooling have a prominent contribution on the thermal maturation, particularly the Mio-Pliocene event. The elevated basal heat flow associated with the lithosphere thinning due to different rifting phases accelerates the thermal maturation of the high sulfur content of Duwi organic-rich interval. The pre-rift sequences are thermal insulators in contrast to the post-rift sequences of evaporites that can cool the underlying strata. Hydrocarbon generation, gas secondary cracking and expulsion are influenced by the post-rift thermal subsidence (the first and second phases). The kerogen has attained a thermal maturity level to generate liquid hydrocarbon since the Messinian (~ 5.8 Ma) and thermogenic gas secondary cracking since Zanclean (~ 3.57 Ma). The hydrocarbon generation (Early Pliocene) is related to the combination of basin burial (accompanied the first phase post-rift thermal subsidence) and the rift renewal through the Pliocene (Messinian Time Event). The gas generation is related to the second phase post-rift thermal subsidence that is accompanied by the deposition of the Post-Zeit Formation. Most of the hydrocarbons attained peak bulk generation during Pliocene (5.8 Ma), which dominated until expulsion commenced (2.52 Ma). The expulsion onset (Late Pliocene) attained subsequent to gas generation and after rift structural trap formation in Late Oligocene–Early Miocene. The expulsion onset (2.52 Ma) related mainly due to a high transformation ratio of kerogen, compaction and partly because of higher initial values of TOC (4.8%) as compared with its present-day values (3.2%). Applying the sensitivity analysis inferred that the source rock properties (HI and TOC) are not assigned as a controlling factor in the maturation process. The eroded thickness has small influence on the maturation process. In contrast, the excellent correlation (Pearson correlation coefficient = 1) supports that heat flow superimposed on the burial-related maturation.

Keywords

Abu Rudeis-Sidri oil field Duwi Formation Gulf of Suez In-source conversion of oil to gas Sensitivity and risk assessment Vitrinite reflectance equivalent 

Notes

Acknowledgments

The authors are grateful to the Egyptian General Petroleum Corporation (EGPC) and Belayim Oil Company (Petrobel) for providing the materials, reports and the digital logs. The authors also acknowledge the Schlumberger Company for giving the access of PetroMod® software applications. The authors thank Dr. Haytham El Atfy for fruitful discussion that lead to a better understanding of the basin geology. The article has profited from discussion with Dr. Oluwaseun Adejuwon Fadipe and Schlumberger SIS segment team members. The authors also thank the editor in chief and anonymous reviewers, whose comments and suggestions have helped to significantly improve this article.

References

  1. Abu Al-Atta, M., Issa, I. G., Ahmed, A. M., & Afife, M. M. (2014). Source rock evaluation and organic geochemistry of Belayim Marine Oil Field, Gulf of Suez, Egypt. Egyptian Journal of Petroleum (EGYJP), 23(3), 285–302.  https://doi.org/10.1016/j.ejpe.2014.08.005.Google Scholar
  2. Afife, M. M., Abu Al-Atta, M., Ahmed, A. M., & Issa, I. G. (2016). Thermal maturity and hydrocarbon generation of the Dawi Formation, Belayim Marine Oil Field, Gulf Of Suez, Egypt: A 1D basin modeling case study. Arabian Journal of Geosciences, 9(5), 1–31.  https://doi.org/10.1007/s12517-016-2320-2.Google Scholar
  3. Ahmed, A. M., & Afife, M. M. (2018). Hydrocarbon-generating potential of the Eocene Thebes Formation, Gulf of Suez: 1D basin modeling as a supplementary tool for source rock evaluation. Arabian Journal of Geosciences, 11(713), 22.  https://doi.org/10.1007/s12517-018-4027-z.Google Scholar
  4. Albrecht, P. (1969). Constituents organiques des roches sedimentaires: etude de la diagenese dans un serie sedimentaure epaisse. Dissertation, Strasbourg University, Strasbourg.Google Scholar
  5. Al-Husseini, I. M. (2012). Late oligocene–early miocene nukhul sequence, Gulf of Suez and Red Sea. GeoArabia, 17(1), 17–44.Google Scholar
  6. Allen, A. P., & Allen, R. J. (1990). Basin analysis: Principles and applications (1st ed.). Oxford: Blackwell Scientific Publications.Google Scholar
  7. Allen, A. P., & Allen, R. J. (2005). Basin analysis: Principles and applications (2nd ed.). Oxford: Blackwell Scientific Publications.Google Scholar
  8. Allen, A. P., & Allen, R. J. (2013). Basin analysis: Principles and applications to petroleum play assessment (3rd ed.). Malaysia: Blackwell Scientific Publications.Google Scholar
  9. Alsharhan, A. S. (2003). Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt. American Association of Petroleum Geologists Bulletin, 87(1), 143–180.Google Scholar
  10. Alsharhan, A. S., & Salah, G. M. (1997a). A common source rock for Egyptian and Saudi hydrocarbons in the Red Sea. American Association of Petroleum Geologists Bulletin, 81, 1640–1659.Google Scholar
  11. Alsharhan, A. S., & Salah, G. M. (1997b). Lithostratigraphy, sedimentology and hydrocarbon habitat of the pre-Cenomanian Nubian Sandstone in the Gulf of Suez Oil Province, Egypt. GeoArabia, 2(4), 385–400.Google Scholar
  12. Atia, M. H., Ahmed, A. M., & Korrat, I. (2015). Thermal maturation simulation and hydrocarbon generation of the turonian Wata Formation in Ras Budran Oil Field, Gulf of Suez, Egypt. Journal of Environmental Sciences, 44(1), 57–92.Google Scholar
  13. Awadalla, A., Hegab, A. O., Ahmed, A. M., & Hassan, S. (2018). Burial and thermal history simulation of the Abu Rudeis-Sidri oil field, Gulf of Suez-Egypt: A 1D basin modeling study. Journal of African Earth Sciences, 138, 86–101.  https://doi.org/10.1016/j.jafrearsci.2017.10.009.Google Scholar
  14. Baskin, D. K., & Peters, K. E. (1992). Early generation characteristics of a sulfur-rich Monterey kerogen. American Association of Petroleum Geologists Bulletin, 76, 1–13.Google Scholar
  15. Beaumont, A. E., Foster, H. N., Vincelette, R. R., Downey, W. M., & Robertson, D. J. (1999). Developing a philosophy of exploration. In A. E. Beaumont & H. N. Foster (Eds.), Treatise of petroleum geology/handbook of petroleum geology: Exploring for oil and gas traps (Vol. 3, pp. 31–34). Tulsa, OK: American Association of Petroleum Geologists.Google Scholar
  16. Behar, F., Kressmann, S., Rudkiewicz, L. J., & Vandenbroucke, M. (1992). Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Organic Geochemistry, 19(1–3), 173–189.Google Scholar
  17. Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F., & Espitalie, J. (1997). Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry, 26(5–6), 321–339.Google Scholar
  18. Behar, F., Vandenbroucke, M., Teermann, C. S., Hatcher, G. P., Leblond, C., & Lerat, O. (1995). Experimental simulation of gas generation from coals and a marine kerogen. Chemical Geology, 126, 247–260.Google Scholar
  19. Berner, U., Faber, E., Scheeder, G., & Panten, D. (1995). Primary cracking of algal and landplant kerogens: Kinetic models of isotope variations in methane, ethane and propane. Chemical Geology, 126(3–4), 233–245.  https://doi.org/10.1016/0009-2541(95)00120-4.Google Scholar
  20. Bostick, N. H. (1973). Time as a factor in thermal metamorphism of phytoclasts (coaly particles). In Congres International de Stratigraphie et de Geologie du Carbonifere, Krefeld, 2328 August 1973 (Vol. Compte Rendu 2, pp. 183–193). Septieme.Google Scholar
  21. Bosworth, W., & Durocher, S. (2017). Present-day stress fields of the Gulf of Suez (Egypt) based on exploratory well data: Non-uniform regional extension and its relation to inherited structures and local plate motion. Journal of African Earth Sciences, 136, 136–147.  https://doi.org/10.1016/j.jafrearsci.2017.04.025.Google Scholar
  22. Bosworth, W., & McClay, K. R. (2001). Structural and stratigraphic evolution of the Gulf of Suez rift, Egypt: A synthesis. Mémoires du Muséum national d’histoire naturelle, 186, 567–606.Google Scholar
  23. Burrus, J., Osadetz, K., Wolf, S., Doligez, B., & Visser, K. (1996). A two-dimensional regional basin model of Williston basin hydrocarbon systems. American Association of Petroleum Geologists Bulletin, 80(2), 265–291.Google Scholar
  24. Connan, J. (Ed.). (1981). Biological markers in crude oils (Petroleum geology in China). Tulsa: Pennwell.Google Scholar
  25. Cooles, G. P., Mackenzie, S. A., & Quigley, M. T. (1986). Calculation of petroleum masses generated and expelled from source rocks. Organic Geochemistry, 10, 235–245.Google Scholar
  26. Di Primio, R., & Horsfield, B. (2006). From petroleum-type organofacies to hydrocarbon phase prediction. American Association of Petroleum Geologists Bulletin, 90(7), 1031–1058.Google Scholar
  27. Dieckmann, V., Schenk, H. J., & Horsfield, B. (2000). Assessing the overlap of primary and secondary reactions by closed- versus open-system pyrolysis of marine kerogens. Journal of Analytical and Applied Pyrolysis, 56, 33–46.Google Scholar
  28. Dolson, C. J., Shaan, V. M., Matbouly, S., Harwood, C., Rashed, R., & Hammouda, H. (2001). The petroleum potential of Egypt. In W. M. Downey, C. J. Threet, & A. W. Morgan (Eds.), Petroleum proviences of the twenty-first century (Vol. Memoir No. 74, pp. 453–482). Tulsa: American Association of Petroleum Geologists.Google Scholar
  29. Dow, W. G. (1977). Kerogen studies and geological interpretations. Journal of Geochemical Exploration, 7, 79–99.Google Scholar
  30. Dowdle, L. W., & Cobb, M. W. (1975). Static formation temperature from well logs—an empirical methods. Journal of Petroleum Technology, 27(11), 1326–1330.  https://doi.org/10.2118/5036-PA.Google Scholar
  31. Eglinton, I. T., Damsté, J. S. S., Kohnen, M. E., & de Leeuw, J. W. (1990). Rapid estimation of the organic sulphur content of kerogens, coals and asphaltenes by pyrolysis-gas chromatography. Fuel, 69(11), 1394–1404.Google Scholar
  32. EGPC. (1996). Gulf of Suez Oil Fields, a comprehensive overview. Cairo: Egyptian General Petroleum Corporation.Google Scholar
  33. El Atfy, H., Brocke, R., & Uhl, D. (2013). Age and paleoenvironment of the Nukhul Formation, Gulf of Suez, Egypt: Insights from palynology, palynofacies and organic geochemistry. GeoArabia, 18(4), 137–174.Google Scholar
  34. El Ayouty, M. K. (1990). Petroleum geology. In R. Said (Ed.), Geology of Egypt (pp. 567–599). Rotterdam: Balkema.Google Scholar
  35. El Beialy, S. Y., Mahmoud, M. S., & Ali, A. S. (2005). Insights on the age, climate and depositional environments of the rudeis and kareem formations, GS-78-1 well, Gulf of Suez, Egypt: a palynological approach. Revista Española de Micropaleontología, 37(2), 273–289.Google Scholar
  36. El Beialy, Y. S., & Ali, S. A. (2002). Dinoflagellates from the Miocene Rudeis and Kareem formations borehole GS-78-1, Gulf of Suez, Egypt. Journal of African Earth Sciences, 35(2), 235–245.Google Scholar
  37. El-Ghali, M., El Khoriby, E., Mansurbeg, H., Morad, S., & Ogle, N. (2013). Distribution of carbonate cements within depositional facies and sequence stratigraphic framework of shoreface and deltaic arenites, Lower Miocene, the Gulf of Suez rift, Egypt. Marine and Petroleum Geology, 45, 267–280.Google Scholar
  38. Elzarka, M. H. (1975). Geochemical relations of fluids in Oil Fields of Gulf of Suez, Egypt. American Association of Petroleum Geologists Bulletin, 59(9), 1667–1675.Google Scholar
  39. Erdman, J. G. (1975). Time and temperature relations affecting the origin, expulsion and preservation of oil and gas. In 9th world petroleum congress (pp. 139–148).Google Scholar
  40. Ertas, D., Kelemen, S. R., & Halsey, T. C. (2006). Petroleum expulsion Part 1. Theory of kerogen swelling in multicomponent solvents. Energy & Fuels, 20, 295–300.Google Scholar
  41. Fahmi, A., Attia, A., El-Tokhy, M., Saber, S., & Madkour, A. (2015). Enhance oil recovery by discovering a new potential hydrocarbon from the unconventional reservoir in Abu Rudeis/Sidri Field, Gulf of Suez-Egypt. In Offshore Mediterranean conference and exhibition, 2015: Offshore Mediterranean conference.Google Scholar
  42. Gabrielsen, H. R. (2010). The structure and hydrocarbon traps of sedimentary basins. In K. Bjorlykke (Ed.), Petroleum geoscience: From sedimentary environments to rock physics (p. 508). Berlin: Springer.Google Scholar
  43. Gandino, A. I. G., & Milad, A. G. (1990). Magnetic interpretation controlled by interactive 3D modelling in the southern Gulf of Suez. In 10th exploration and production conference, Cairo (vol. 1, pp. 740–786). Egyptian General Petroleum Corporation.Google Scholar
  44. Ganz, H. (1986). Organisch-und anorganisch-geochemische Untersuchungen an ägyptischen Schwarzschiefer-Phosphoritsequenzen-Methodenentwicklung und genetisches Modell: Reimer.Google Scholar
  45. Ganz, H., Kalkreuth, W., Ganz, S., Öner, F., Pearson, M., & Wehner, H. (1990). Infrared analysis—State of the art. Berliner Geowissenshaftliche Abhandlungen, 120, 1011–1026.Google Scholar
  46. Ganz, H., & Robinson, V. (1985). Newly developed infrared method for characterizing kerogen type and thermal maturation. In 12th international meeting on organic geochemistry (p. 94).Google Scholar
  47. Genedi, E. M. A. M., Ghazala, H. H., & Ahmed, A. M. (2016). Reservoir characterization of the middle miocene Belayim Formation (Nullipore Member) in Ras Fanar Oil Field, Gulf of Suez-Egypt. Egyptian Journal of Applied Geophysics, 15(1), 143–170.Google Scholar
  48. Gibbons, M. J., Williams, A. K., Piggott, N., & Williams, G. M. (1983). Petroleum geochemistry of the Southern Santos Basin, offshore Brazil. Journal of the Geological Society, 140, 423–430.Google Scholar
  49. Gluyas, J., & Swarbrick, R. (2004). Petroleum geoscience. Oxford: Blackwell Scientific Publications.Google Scholar
  50. Hantschel, T., & Kauerauf, I. A. (2009). Fundamentals of basin and petroleum systems modeling. Berlin: Springer.Google Scholar
  51. Higley, D. K. (2014). Thermal maturation of petroleum source rocks in the Anadarko basin province, Colorado, Kansas, Oklahoma, and Texas. In D. K. Higley (Ed.), Petroleum systems and assessment of undiscovered oil and gas in the Anadarko Basin Province, Colorado, Kansas, Oklahoma, and Texas—USGS Province. Digital Data Series DDS–69–EE (Vol. 58). Reston: U.S. Department of the Interior/U.S. Geological SurveyGoogle Scholar
  52. Higley, K. D., Lewan, M., Roberts, R. N. L., & Henry, E. M. (2006). Petroleum system modeling capabilities for use in oil and gas resource assessments. In U.S. Geological Survey (pp. 18). Reston, Virginia: U.S. Department of the Interior U.S. Geological Survey.Google Scholar
  53. Hoering, T. C., & Abelson, P. H. (1963). Hydrocarbon from kerogen. Carnegie Institute, Washington Year Book, 62, 229–234.Google Scholar
  54. Horsfield, B., & Düppenbecker, S. J. (1991). The decomposition of Posidonia shale and Green River shale kerogens using microscale sealed vessel (MSSV) pyrolysis. Journal of Analytical and Applied Pyrolysis, 20, 107–123.Google Scholar
  55. Horsfield, B., Schenk, J. H., Mills, N., & Welte, D. (1992). An investigation of the in-reservoir conversion of oil to gas: Compositional and kinetic findings from closed-system programmed-temperature pyrolysis for simulating the conversion of oil to gas in a deep petroleum reservoir. Organic Geochemistry, 19(1–3), 191–204.  https://doi.org/10.1016/0146-6380(92)90036-W.Google Scholar
  56. Hughes, G. W., Abdine, S., & Girgis, M. H. (1992). Miocene biofacies development and geological history of the Gulf of Suez, Egypt. Marine and Petroleum Geology, 9(1), 2–28.Google Scholar
  57. Hui, T., Zhaoming, W., Zhongyao, X., Xianqing, L., & Xianming, X. (2006). Oil cracking to gases: Kinetic modeling and geological significance. Chinese Science Bulletin, 51(22), 2763–2770.  https://doi.org/10.1007/s11434-006-2188-8.Google Scholar
  58. Hunt, M. J. (1979). Hydrocarbon studies in deep ocean sediments. In W. E. Baker (Ed.), Symposium on organic geochemistry of deep sea drilling project cores. Princeton, NJ: Princeton Science Press.Google Scholar
  59. Hutton, A. C., Kantsler, A. J., Cook, A. C., & McKirdy, D. M. (1980). Organic matter in oil shales. Austuralian Petroleum Exploration Society, 20, 44–67.Google Scholar
  60. IHS, E. (2006). Gulf of Suez basin monitor. In E. IHS (Ed.), Basin monitor. IHS Energy.Google Scholar
  61. Jackśon, J. K., Burnham, K. A., Braun, L. R., & Knauss, G. K. (1995). Temperature and pressure dependence of n-hexadecane cracking. Organic Geochemistry, 23(10), 941–953.  https://doi.org/10.1016/0146-6380(95)00068-2.Google Scholar
  62. Jia, J., Liu, Z., Meng, Q., Liu, R., Sun, P., & Chen, Y. (2012). Quantitative evaluation of oil shale based on well log and 3D seismic technique in the Sangliao Basin, North-East Chia. Oil Shale, 29(2), 128–150.Google Scholar
  63. Jia, W., Wang, Q., Liu, J., Peng, P., Li, B., & Lu, J. (2014). The effect of oil expulsion or retention on further thermal degradation of kerogen at the high maturity stage: A pyrolysis study of type II kerogen from Pingliang shale, China. Organic Geochemistry, 71, 17–29.  https://doi.org/10.1016/j.orggeochem.2014.03.009.Google Scholar
  64. Kelemen, S. R., Walters, C. C., Ertas, D., Freund, H., & Curry, D. J. (2006a). Petroleum expulsion Part 3. A model of chemically driven fractionation during expulsion of petroleum from kerogen. Energy & Fuels, 20, 309–319.Google Scholar
  65. Kelemen, S. R., Walters, C. C., Ertas, D., Kwiatek, L. M., & Curry, D. J. (2006b). Petroleum expulsion Part 2. Organic matter type and maturity effects on kerogen swelling by solvents and thermodynamic parameters for kerogen from regular solution theory. Energy & Fuels, 20, 301–308.Google Scholar
  66. Khavari-Khorasani, G., Dolson, C. J., & Michelsen, J. K. (1998). The factors controlling the abundance and migration of heavy versus light oils, as constrained by data from the Gulf of Suez. Part I. The effect of expelled petroleum composition, PVT properties and petroleum system geometry. Organic Geochemistry, 29, 255–282.Google Scholar
  67. Klitzsch, E., & Squyres, C. H. (1990). Paleozoic and Mesozoic geological history of the Northeastern Africa based upon new interpretation of the Nubian Strata. American Association of Petroleum Geologists Bulletin, 74, 1203–1211.Google Scholar
  68. Littke, R., Baker, D. R., & Leythaeuser, D. (1988). Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. Organic Geochemistry, 13, 549–560.Google Scholar
  69. Louis, M. C., & Tissot, B. (1967). Influence de la temperature et da la pression sur la formation de hydrocarbures dans les argiles a kerogene. In Proceedings 7th world petroleum congress, Mexico, (vol. 2, pp. 47–60).Google Scholar
  70. Magoon, L. B., & Dow, W. G. (Eds.). (1994). The petroleum system-from source to trap (Vol. 60, American Association of Petroleum Geologists Memoir). Tulsa: American Association of Petroleum Geologists.Google Scholar
  71. Mann, U., Hantschel, T., Schaefer, G. R., Krooss, B., Laythaeuser, D., Littke, R., et al. (1997). Petroleum migration: mechanisms, pathways, efficiencies and numerical simulations. In H. D. Welte, B. Horsfield, & D. R. Baker (Eds.), Petroleum and basin evolution: Insights form petroleum geochemistry, geology and basin modeling (pp. 403–520). Berlin: Springer.Google Scholar
  72. McNab, J. G., Smith, P. V., Jr., & Betts, R. L. (1952). The evolution of petroleum. Engineering Chemistry, 44, 2556–2563.Google Scholar
  73. Meshref, W. M., Abu El Karamat, M. S., & El Gindi, M. K. (1988). Exploration concepts for oil in the Gulf of Suez. In 9th exploration and production conference, Cairo (vol. 1, pp. 1–23). Egyptian General Petroleum Corporation.Google Scholar
  74. Metwalli, F. I., & Pigott, J. D. (2005). Analysis of petroleum system criticals of the Matruh-Shushan Basin, Western Desert, Egypt. Petroleum Geoscience, 11(2), 157–178.Google Scholar
  75. Mostafa, A. E. R. (1985). Oil prospects of Rahmi area, Gulf of Suez-Egypt. Alexandria: Alexandria University.Google Scholar
  76. Mostafa, A. R. (1993). Organic geochemistry of source rocks and related crude oils in the Gulf of Suez area, Egypt. Berliner Geowisenschaftliche Abhandlungen, A, 147, 163.Google Scholar
  77. Mostafa, A. R., & Ganz, H. (1990). Source rock evaluation of a well in Abu Rudies area, Gulf of Suez. Berliner Geowiss, 120(2), 1002–1040.Google Scholar
  78. Mostafa, A. R., Klitzsch, E., Matheis, G., & Ganz, H. (1993). Origin and evaluation of hydrocarbons in the Gulf of Suez basin. In U. Thorweihe & H. Schandelmaier (Eds.), Geoscientific research in northeast Africa (pp. 267–275). Rotterdam: Balkema.Google Scholar
  79. Orr, W. L. (1986). Kerogen/asphaltene/sulphur relationship in sulphur-rich Monterey oils. Advances in Organic Geochemistry, 10, 499–516.Google Scholar
  80. Orr, W. L., & White, C. M. (1990). Geochemistry of sulfur in fossil fuels. Washington, DC: American Chemical Society.Google Scholar
  81. Othman, A., Ahmed, A. M., Korrat, I., & Sherief, R. M. (2013). Thermal maturity evaluation and hydrocarbon generation of carbonate organic rich intervals of Sudr formation, Shoab Ali oilfield, Gulf of Suez, Egypt. Journal of Environmental Sciences, 42(4), 569–605.Google Scholar
  82. Palacas, J. G. (1984). Carbonate rocks as source rocks of petroleum: geological and chemical characteristics and oil-source correlations. In Proceedings of the eleventh world petroleum congress, London (vol. 2, pp. 31–43).Google Scholar
  83. Palmer, S. E. (1993). Organic geochemistry of organic rich cretaceous carbonates with regard to depostional setting. American Association of Petroleum Geologists Bulletin, 77(2), 339.Google Scholar
  84. Passey, R. Q., Greaney, S., Kulla, B. J., Moretti, J. F., & Stroud, D. J. (1989). Well log evaluation of organic rich rocks. In 14th international meeting on organic geochemistry, Paris, 1822 September 1989 (pp. Abstract, vol. 1).Google Scholar
  85. Passey, R. Q., Greaney, S., Kulla, B. J., Moretti, J. F., & Stroud, D. J. (1990). A practical model for organic richness from porosity and resistivity logs. American Association of Petroleum Geologists Bulletin, 74(1), 1777–1794.Google Scholar
  86. Peijs, M. M. A. J., Bevan, G. T., & Piombino, T. J. (2012). The Gulf of Suez rift basin. In G. D. Roberts & W. A. Bally (Eds.), Regional geology and tectonics: Phanerozoic rift systems and sedimentary basins (1st ed., pp. 164–194). Amsterdam: Elsevier.Google Scholar
  87. Pepper, S. A., & Corvi, J. P. (1995a). Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and Petroleum Geology, 12(3), 291–319.Google Scholar
  88. Pepper, S. A., & Corvi, J. P. (1995b). Simple kinetic models of petroleum formation. Part III: Modeliling an open system. Marine and Petroleum Geology, 12(4), 417–452.Google Scholar
  89. Pepper, S. A., & Dodd, A. T. (1995). Simple kinetics models of petroleum formation. Part II: oil-gas cracking. Marine and Petroleum Geology, 12(3), 321–340.Google Scholar
  90. Peters, E. K., Walters, C. C., & Moldowan, M. J. (2005). The biomarker guide (2nd ed., Vol. I: Biomarkers and Isotopes in the Environment and Human History). Cambridge: Cambridge University Press.Google Scholar
  91. Philippi, G. T. (1965). On the depth, time and mechanism of petroleum generation. Geochimica et Cosmochimica Acta, 29, 1021–1049.Google Scholar
  92. Plaziat, J.-C., Montenat, C., Barrier, P., Janin, M.-C., Orszag-Sperber, F., & Philobbos, E. (1998). Stratigraphy of the Egyptian syn-rift deposits: Correlations between axial and peripheral sequences of the north-western Red Sea and Gulf of Suez and their relations with tectonics and eustacy. In H. B. Purser & J. W. D. Bosence (Eds.), Sedimentation and tectonics in rift basins: Red Sea-Gulf of Aden (1st ed., pp. 211–222). Dordrecht: Springer-Science+Business Media, B.V.Google Scholar
  93. Pocknall, D. T., Krebs, W. N., Tawfik, E., & Ahmed, A. A. (1999). Pliocene climate and depositional environments, Gulf of Suez, Egypt: Evidence from palynology and diatoms. In American Association Stratigraphic Palynologists Foundation, The Pliocene: Time of change (pp. 163–171).Google Scholar
  94. Poelchau, H. S., Baker, D. R., Hantschel, T., Horsfield, B., & Wygrala, B. P. (1997). Basin simulation and the design of the conceptual basin model. In H. D. Welte, B. Horsfield, & D. R. Baker (Eds.), Petroleum and basin evolution: Insights form petroleum geochemistry, geology and basin modeling (p. 535). Berlin: Springer.Google Scholar
  95. Quigley, M. T., & Mackenzie, A. (1988). The temperatures of oil and gas formation in the subsurface. Nature, 333, 549–552.Google Scholar
  96. Richardson, M., & Arthur, A. (1988). The Gulf of Suez, northern Red Sea Neogene rift: A quantitative basin analysis. Marine and Petroleum Geology, 5, 247–270.Google Scholar
  97. Ritter, U. (2003). Solubility of petroleum compounds in kerogen: Implications for petroleum expulsion. Organic Geochemistry, 34, 319–326.Google Scholar
  98. Sandvik, E. I., Young, A., & Curry, D. J. (1992). Expulsion form hydrocarbon sources: The role of organic absorption. Organic Geochemistry, 19, 77–87.Google Scholar
  99. Schenk, J. H., Di Primio, R., & Horsfield, B. (1997). The conversion of oil into gas in petroleum reservoirs. Part 1: Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis. Organic Geochemistry, 26(7–8), 467–481.  https://doi.org/10.1016/S0146-6380(97)00024-7.Google Scholar
  100. Schimmelmann, A., Sessions, A. L., & Mastalerz, M. (2006). Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation. Annual Review of Earth and Planetary Sciences, 34, 501–533.Google Scholar
  101. Schutz, K. I. (1994). Structure and stratigraphy of the Gulf of Suez, Egypt. In M. S. London (Ed.), Interior rift basins (Vol. Memoir No. 59, pp. 57–96). Tulsa: American Association of Petroleum Geologists.Google Scholar
  102. Selley, C. R. (2000). Applied sedimentology (2nd ed.). San Diego: Academic Press.Google Scholar
  103. Smagala, T. M., Brown, A. C., & Nydedgger, L. G. (1984). Log-derived indicator of thermal maturity, Niobrara Formation, Denver Basin, Colorada, Nebrask, Wyoming. In Hydrocarbon source rocks of the greater rocky mountain region (pp. 355–364). Rocky Mountain Association of Geologists.Google Scholar
  104. Soliman, A., Ćorić, S., Head, M. J., Piller, W. E., & El Beialy, Y. S. (2012). Lower and Middle Miocene biostratigraphy, Gulf of Suez, Egypt based on dinoflagellate cysts and calcareous nannofossils. Palynology, 36(1), 38–79.Google Scholar
  105. Sweeney, J. J., & Burnham, K. A. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin, 74(10), 1559–1570.Google Scholar
  106. Tannenbaum, E., & Aizenshtat, Z. (1985). Formation of immature asphalt from organic-rich carbonate rocks. I Geochemical correlation. Organic Geochemistry, 8, 181–192.Google Scholar
  107. Teichmüller, R., Teichmüller, M., & Bartenstein, H. (1971). Umwandlung der organischen substanz in dach des Bramschen Massive. Fortschritte in der Geologie von Rheinland und Westfalen, 18, 501–538.Google Scholar
  108. Thomas, M. M., & Clouse, J. A. (1990). Primary migration by diffusion through kerogen: II. Hydrocarbon diffusivities in kerogen. Geochimica et Cosmochimica Acta, 54, 2775–2779.Google Scholar
  109. Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence (2nd ed.). New York: Springer.Google Scholar
  110. Ungerer, P. (1990). State of the art research in kinetic modeling of oil formaion and expulsion. Organic Geochemistry, 16(1–3), 1–25.Google Scholar
  111. Ungerer, P., Burrus, J., Doligez, B., Chenet, P., & Bessis, F. (1990). Basin evaluation by integrated two-dimensional modelling of heat transfer, fluid flow, hydrocarbon generation, and migration. American Association of Petroleum Geologists Bulletin, 74(3), 309–335.Google Scholar
  112. Vasseyovich, N. B., Korchagina, Y. I., Lopatin, N. V., & Chernyshev, V. V. (1970). Principle phase of oil formation. International Geology Review, 12, 1276–1296.Google Scholar
  113. Waples, D. W. (1984). Thermal models for oil generation. In J. Brooks & H. D. Welte (Eds.), Advances in petroleum geochemistry (Vol. 1, pp. 8–67). London: Academic Press.Google Scholar
  114. Wei, Z. F., Zou, Y. R., Cai, Y. L., Wang, L., Luo, X. R., & Peng, P. A. (2012). Kinetics of oil group-type generation and expulsion: an integrated application to Dongying depression, Bohai Bay Basin, China. Organic Geochemistry, 52, 1–12.Google Scholar
  115. Welte, H. D., & Yükler, M. (1981). Petroleum origin and accummulation in basin evolution—A quantitative model. American Association of Petroleum Geologists Bulletin, 65, 1387–1396.Google Scholar
  116. Wescott, W. A., Krebs, W. N., Dolson, J. C., Ramzy, M., Karamat, S. A., & Moustafa, T. (1997). Chronostratigraphy, sedimentary facies, and architecture of tectono-stratigraphic sequences: An integrated approach to rift basin exploration, Gulf of Suez, Egypt. In 18th annual research conference, shallow marine and non-marine reservoirs (pp. 377–399). Gulf coast section SEPM foundation.Google Scholar
  117. Wygrala, B. P. (1989). Integrated study of an oil field in the southern Po basin, northern Italy. Dissertation, University of Köln, Köln.Google Scholar
  118. Zahra, S. H., & Nakhla, A. (2015). Deducing the subsurface geological conditions and structural framework of the NE Gulf of Suez area, using 2D and 3D seismic data. NRIAG Journal of Astronomy and Geophysics, 4(1), 64–85.Google Scholar
  119. Zahra, S. H., & Nakhla, A. (2016). Structural interpretation of seismic data of Abu Rudeis-Sidri area, northern Central Gulf of Suez, Egypt. NRIAG Journal of Astronomy and Geophysics, 5(2), 435–450.Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  1. 1.Geology DepartmentMansoura UniversityMansouraEgypt
  2. 2.Schlumberger Company, DhahranAl-KhobarSaudi Arabia
  3. 3.Petroleum Engineering and Gas TechnologyBritish UniversityCairoEgypt
  4. 4.North Sinai Petroleum CompanyCairoEgypt

Personalised recommendations