Natural Resources Research

, Volume 28, Issue 4, pp 1317–1327 | Cite as

Prospecting for Clinoptilolite-Type Zeolite in a Volcano-Sedimentary Terrain Using ASTER Data: A Case Study from Alborz Mountains, Northern Iran

  • Khadijeh Validabadi BozcheloeiEmail author
  • Majid H. Tangestani
Original Paper


Zeolites are hydrated alumino-silicates of alkali metals and alkaline earth cations which occur in sedimentary and volcano-sedimentary terrains. In this study, visible–near-infrared and shortwave infrared data of ASTER were evaluated in prospecting for zeolite in part of the green tuff belt of the Alborz Mountains, northern Iran. The study area is dominantly covered by sedimentary and volcano-sedimentary rocks, in which zeolite minerals occur only in the Late Eocene vitric tuff. Principal components (PC) analysis and spectral information divergence (SID) were used to discriminate and map the sedimentary and volcano-sedimentary units and the zeolite-rich areas, respectively. The X-ray diffraction and reflectance spectroscopy results indicated that clinoptilolite is the major type of zeolite mineral in this area. Comparing a color composite image, produced from PC images 1–3–5 as R–G–B, with the published geological map and the field investigations indicated that major sedimentary and volcano-sedimentary units as well as their alluvial deposits were discriminated efficiently. Results of the SID method, using an image-derived spectrum of clinoptilolite as a reference, showed good agreements with the field observations. The results of this study indicated that ASTER data are useful for discriminating various sedimentary and volcano-sedimentary units as well as clinoptilolite-type zeolite-rich areas in arid and semiarid terrains.


Clinoptilolite Zeolite ASTER Spectral information divergence 



We would like to express our appreciation to Mark van der Meijde, Caroline Lievens, and Wim H. Bakker for their constructive comments and suggestions. Also, we would like to thank Mr. Mehran Rajabi, from Afrazand zeolite Company, for his help during the field work and also to Department of Earth Systems Analysis, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, for providing laboratory facilities.


  1. Adams, J. B., & Gillespie, A. R. (2006). Remote sensing of landscapes with spectral images, a physical modeling approach (1st ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
  2. Agar, B., & Coulter, D. (2007). Remote Sensing for mineral exploration. A decade perspective 1997–2007. In Proceedings of exploration 07: fifth decennial international conference on mineral exploration (pp. 109–136).Google Scholar
  3. Ahmadirouhani, R., & Samiee, S. (2014). Mapping glauconite units with using remote sensing techniques in north east of Iran. The international archives of the photogrammetry, remote sensing and spatial information sciences, Volume XL-2/W3. In: The 1st ISPRS international conference on geospatial information research, 15–17 November 2014, Tehran, Iran.Google Scholar
  4. Alimohammadi, M., Alirezaei, S., & Kontak, D. J. (2015). Application of ASTER data for exploration of porphyry copper deposits: a case study of Daraloo-Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geology Reviews, 70, 290–304.CrossRefGoogle Scholar
  5. Asiabanha, A., & Foden, J. (2012). Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos, 148, 98–111.CrossRefGoogle Scholar
  6. Ayoobi, I., & Tangestani, M. H. (2017). Evaluation of relative atmospheric correction methods on ASTER VNIR–SWIR data in playa environment. Carbonates and Evaporites, 32(4), 539–546.CrossRefGoogle Scholar
  7. Bazargani-Guilani, K., & Rezaei, S. (2008). Mineralogy and genesis of zeolitic succession of Sartakht area, SE—Semnan, north Central Iran. Tehran University Journal of Science, 2, 64–73. (in Persian).Google Scholar
  8. Berberian, F., & Berberian, M. (1981). Tectono–plutonic episodes in Iran. In: Geological Survey of Iran, Report 52, pp. 566–593.Google Scholar
  9. Berberian, F., Muir, I. D., Pankhurst, R. J., & Berberian, M. (1982). Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and central Iran. Journal of the Geological Society, 139(5), 605–614.CrossRefGoogle Scholar
  10. Bertsch, L., & Habgood, H. W. (1963). An infrared spectroscopic study of the adsorption of water and carbon dioxide by Linde Molecular Sieve X. Journal of Physical Chemistry, 67, 1621–1628.CrossRefGoogle Scholar
  11. Bishop, J. L., Pieters, C. M., & Edwards, J. O. (1994). Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays and Clay Minerals, 6, 702–716.CrossRefGoogle Scholar
  12. Castro Godoy, S. E., Cozzi, G., Ubaldón, M. C., Donnari, E., & Wright, E. M. (2017). Detection of zeolite with ASTER in stone stop-Buitrera, middle Chubut river, province of Chubut [Detección de Zeolitas con ASTER en Piedra Parada - La Buitrera, río Chubut medio, provincia del Chubut]. Serie Correlacion Geologica, 33(1–2), 61–72.Google Scholar
  13. Chang, C.-I. (1999). Spectral information divergence for hyperspectral image analysis. In Geoscience and remote sensing symposium, 1999. IGARSS ’99 Proceedings. IEEE 1999 International, 1 (pp. 509–511).Google Scholar
  14. Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., & Vergo, N. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 12653–12680.CrossRefGoogle Scholar
  15. Clark, R. N., Swayze, G. A., Gallagher, A. J., Gorelick, N., & Kruse, F. (1991). Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials. In R. O. Green (Ed.), Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, Jet Propulsion Laboratory Publication 91-28 (pp. 2–3).Google Scholar
  16. Clark, R. N., Swayze, G. A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., & Sutley, S. J. (2007). USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231.
  17. Cloutis, E. A., Asher, P. M., & Mertzm, S. A. (2002). Spectral reflectance properties of zeolites and remote sensing implications. Journal of Geophysical Research, 107(E9), 5067. Scholar
  18. Congalton, R. (1991). A review of the assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment, 37, 35–46.CrossRefGoogle Scholar
  19. Crosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240.CrossRefGoogle Scholar
  20. de Jong, S. M., & van der Meer, F. D. (2004). Remote sensing image analysis: including the spatial domain. Remote sensing and digital image processing (Vol. 5). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  21. Evans, A. H. (1993). Ore geology and industrial minerals (3rd ed.). Oxford: Blackwell Scientific.Google Scholar
  22. Fujisada, H. (1995). Design and performance of the ASTER instrument. In Proceedings of SPIE. The International Society for Optical Engineering, 2583, pp. 16–25.Google Scholar
  23. Gaffney, E. S., Singer, R. B., & Kunkie, T. D. (1984). Zeolites on mars: Prospects for remote sensing, in reports of the planetary geology and geophysics program 1984 (p. 397). Washington, D. C.: NASA.Google Scholar
  24. Gottardi, G., & Galli, E. (1985). Natural zeolites. New York: Springer.CrossRefGoogle Scholar
  25. Hassanzadeh, J., Ghazi, A. M., Axen, G., & Guest, B. (2002). Oligomiocene mafic-alkaline magmatism north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc. Geological Society of America Abstracts with Programs, 34(6), 331.Google Scholar
  26. Hay, R. L. (1977). Geology of zeolites in sedimentary rocks. In F. A. Mumpton (Ed.), Mineralogy and geology of natural zeolites. Chelsea. Mineralogical Society of America, 4, pp. 53–63.Google Scholar
  27. Hosseinjani Zadeh, M., Tangestani, M. H., Roldan, F. V., & Yusta, I. (2014). Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran. Ore Geology Reviews, 66, 191–198.CrossRefGoogle Scholar
  28. Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 501–513.CrossRefGoogle Scholar
  29. Hunt, G. R., & Salisbury, J. W. (1970). Visible and near-infrared spectra of minerals and rocks. I. Silicate minerals. Modern Geology, 1, 283–300.Google Scholar
  30. Iijima, A. (1980). Geology of natural zeolites and zeolitic rocks. In L. V. C. Rees (Ed.), Proceedings, 5th international conference on zeolites. Pure Applied Chemistry, 52, pp. 2115–2130.Google Scholar
  31. Kazemian, H. (2002). Zeolite science in Iran: A brief review. In Zeolite ‘02, 6th international conference on the occurrence, properties and utilization of natural zeolites, Thessaloniki, Greece (pp. 162–163).Google Scholar
  32. Kenea, N. H., & Haenisch, H. (1996). Principal component analyses for lithological and alteration mapping. Example from the Red sea Hills, Sudan. International Archive of Photogrammetry and Remote Sensing, XXXI, 271–275.Google Scholar
  33. Khalili, M., Makizadeh, M. A., & Taghipour, B. (2005). Evaporitic zeolites in Central Alborz, north of Iran. Carbonates and Evaporites, 20, 34–41. Scholar
  34. Kruse, F. A. (1988). Use of Airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada and California. Remote Sensing of Environment, 24, 31–51.CrossRefGoogle Scholar
  35. Langella, A., Cappelletti, P., & de’ Gennaro, M. (2001). Zeolites in closed hydrologic systems. In D. L., Bish, & D. W. Ming (Eds.), Natural zeolites: Occurrence, properties, applications. In: Reviews in Mineralogy and Geochemistry, vol. 45. Mineralogical Society of America, 45 (pp. 235–260).Google Scholar
  36. Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2, 161–186.CrossRefGoogle Scholar
  37. Noetstaller, R. (1988). Industrial minerals, a technical review (Vol. 76). Washington, D.C.: World Bank.Google Scholar
  38. Oztan, N. S., & Suzen, M. L. (2011). Mapping evaporate minerals by ASTER. International Journal of Remote Sensing, 32(6), 1651–1673.CrossRefGoogle Scholar
  39. Rajendran, R., Al-Khirbash, S., Pracejus, B., Nasir, S., Al-Abri, A. H., Kusky, T. M., et al. (2012). ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geology Reviews, 44, 121–135.CrossRefGoogle Scholar
  40. Rajendran, R., & Nasir, S. (2017). Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits. Ore Geology Reviews, 88, 317–335.CrossRefGoogle Scholar
  41. Sabins, F. F. (1987). Remote sensing principles and interpretation. New York: W.H. Freeman and Company.CrossRefGoogle Scholar
  42. Sanjeevi, S. (2008). Targeting limestone and bauxite deposits in Southern India by spectral unmixing of hyperspectral image data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008.Google Scholar
  43. Sheppared, R. A., & Gude, A. J., III. (1968). Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene lake Tecopa, Inyo Country, California. US Geological Survey Professional Paper, 597, 38.Google Scholar
  44. Soltaninejad, A., Ranjbar, H., Honarmand, M., & Dargahi, S. (2018). Evaporite mineral mapping and determining their source rocks using remote sensing data in Sirjan playa, Kerman, Iran. Carbonates and Evaporites, 33(2), 255–274.CrossRefGoogle Scholar
  45. Taghipour, B., & Mackizadeh, M. (2012). Geological environment of the zeolite origin in the Central Alborz. Neues Jahrbuch Fur Geologie und palaontologie, 256, 235–248.CrossRefGoogle Scholar
  46. Tangestani, M. H., & Moore, F. (2002). Porphyry copper alteration mapping at the Meiduk area, Iran. International Journal of Remote Sensing, 23(22), 4815–4825.CrossRefGoogle Scholar
  47. Volesky, J. C., Stern, R. J., & Johnson, P. R. (2003). Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Research, 123, 235–247. Scholar
  48. Vural, A., Corumluoglu, O., & Asri, I. (2016). Exploring Gordes zeolite by feature oriented principle component analysis of LANDSAT images. Caspian Journal of Environmental Science, 14(4), 285–298.Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  • Khadijeh Validabadi Bozcheloei
    • 1
    Email author
  • Majid H. Tangestani
    • 1
  1. 1.Department of Earth Sciences, Faculty of SciencesShiraz UniversityShirazIran

Personalised recommendations