Natural Resources Research

, Volume 28, Issue 4, pp 1299–1316 | Cite as

An Improved Data-Driven Multiple Criteria Decision-Making Procedure for Spatial Modeling of Mineral Prospectivity: Adaption of Prediction–Area Plot and Logistic Functions

  • Reza Ghezelbash
  • Abbas MaghsoudiEmail author
  • Emmanuel John M. Carranza
Original Paper


Assigning realistic weights to targeting criteria in order to synthesize various geo-spatial datasets is one of the most important challenging tasks for mineral prospectivity modeling (MPM). Techniques for multiple criteria decision-making (MCDM), like MPM, are deeply concerned with combining a large-scale exploration dataset into a single evaluation model for localizing prospects of a certain deposit type. In this paper, we develop the data-driven TOPSIS procedure, as a GIS-based MCDM technique for MPM. Because weighting and integrating various exploration evidence layers are influenced by intricacy and vagueness of ore mineralization process, imprecise selection of targeting criteria may reduce the possibility of exploration success. To address this problem, we applied prediction–area plot for prioritizing, recognizing and weighting efficient and inefficient targeting criteria. In addition, normalized density (Nd) index was then used for assigning significant weights to fractal-based discretized classes of each targeting criterion. After recognition of efficient and inefficient targeting criteria, data-driven TOPSIS procedure was adapted based on participation of only efficient targeting criteria as well as all targeting criteria for porphyry-Cu prospectivity in Varzaghan district, NW Iran. For quantitative assessment, a success rate curve for each of the two prospectivity models generated in this study was drawn. The results prove the superiority of the predictive model based on using efficient targeting criteria.


MPM Data-driven TOPSIS C–A fractal P–A plot Normalized density Success rate curve 



The authors are grateful to the Associate Editor and two anonymous reviewers for their constructive comments/edits, which considerably improved this paper. The senior author is greatly indebted to Mr. Daviran for his generous assistance in the preparation of paper maps.


  1. Abedi, M., & Norouzi, G. (2012). Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration. Journal of Applied Geophysics, 83, 35–45.Google Scholar
  2. Abedi, M., & Norouzi, G. H. (2016). A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data. International Journal of Applied Earth Observation and Geoinformation, 46, 31–44.Google Scholar
  3. Abedi, M., Norouzi, G. H., & Fathianpour, N. (2013). Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556–567.Google Scholar
  4. Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., & Omran, N. R. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration, 108(3), 220–232.Google Scholar
  5. Agterberg, F. P., Bonham-Carter, & G. F. (1999). Logistic regression and weights of evidence modeling in mineral exploration. In Proceedings of the 28th International Symposium on Applications of Computer in the Mineral Industry (APCOM), Golden, Colorado (Vol. 483, p. 490).Google Scholar
  6. Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research, 14(1), 1–17.Google Scholar
  7. Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. Computer Applications in Resource Estimation: Predictions and Assessment for Metals and Petroleum, 63, 1–21.Google Scholar
  8. Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics, 229(3), 211–238.Google Scholar
  9. Almasi, A., Yousefi, M., & Carranza, E. J. M. (2017). Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geology Reviews, 91, 1066–1080.Google Scholar
  10. An, P. (1991). Application of fuzzy set theory to integrated mineral exploration. Canadian Journal of Exploration Geophysics, 27, 1–11.Google Scholar
  11. Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists-modeling with GIS. Oxford: Pergamon.Google Scholar
  12. Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights of evidence modelling: a new approach to mapping mineral potential. In F. P. Agterberg & G. F. Bonham-Carter (Eds.), Statistical applications in the earth sciences, Geological Survey of Canada, Paper 89-9 (pp. 171–183).Google Scholar
  13. Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: a new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47(4), 757–770.Google Scholar
  14. Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Amsterdam: Elsevier.Google Scholar
  15. Carranza, E. J. M. (2011). Geocomputation of mineral exploration targets. Computers and Geosciences, 37(12), 1907–1916.Google Scholar
  16. Carranza, E. J. M., & Hale, M. (1997). A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay Province, Philippines. Journal of Geochemical Exploration, 60(2), 157–171.Google Scholar
  17. Carranza, E. J. M., & Hale, M. (2001). Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines. Exploration and Mining Geology, 10(3), 165–175.Google Scholar
  18. Carranza, E. J. M., & Hale, M. (2002a). Spatial association of mineral occurrences and curvilinear geological features. Mathematical Geology, 34(2), 203–221.Google Scholar
  19. Carranza, E. J. M., & Hale, M. (2002b). Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines. Natural Resources Research, 11(1), 45–59.Google Scholar
  20. Carranza, E. J. M., & Laborte, A. G. (2015a). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers and Geosciences, 74, 60–70.Google Scholar
  21. Carranza, E. J. M., & Laborte, A. G. (2015b). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.Google Scholar
  22. Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25(1), 35–50.Google Scholar
  23. Carranza, E. J. M., Mangaoang, J. C., & Hale, M. (1999). Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research, 8(2), 165–173.Google Scholar
  24. Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making methods. In Fuzzy multiple attribute decision making. Methods and applications (pp. 289–486). Springer-Verlag, Berlin.Google Scholar
  25. Cheng, Q., & Agterberg, F. P. (1995). Multifractal modeling and spatial point processes. Mathematical Geology, 27(7), 831–845.Google Scholar
  26. Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130.Google Scholar
  27. Cooke, D. R., Hollings, P., & Walshe, J. L. (2005). Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100(5), 801–818.Google Scholar
  28. Crosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240.Google Scholar
  29. De Palomera, P. A., van Ruitenbeek, F. J., & Carranza, E. J. M. (2015). Prospectivity for epithermal gold–silver deposits in the Deseado Massif, Argentina. Ore Geology Reviews, 71, 484–501.Google Scholar
  30. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barcelo-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300.Google Scholar
  31. Ghezelbash, R., & Maghsoudi, A. (2018a). A hybrid AHP-VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran. Arabian Journal of Geosciences, 11(11), 275.Google Scholar
  32. Ghezelbash, R., & Maghsoudi, A. (2018b). Comparison of U-spatial statistics and C–A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran. Comptes Rendus Geoscience, 350(4), 180–191.Google Scholar
  33. Ghezelbash, R., Maghsoudi, A., & Daviran, M. (2018). Prospectivity modeling of porphyry copper deposits: recognition of efficient mono-and multi-element geochemical signatures in the Varzaghan district, NW Iran. Acta Geochimica. Scholar
  34. Hariharan, S., Tirodkar, S., Porwal, A., Bhattacharya, A., & Joly, A. (2017). Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: An example from the Tanami region, Western Australia. Natural Resources Research, 26(4), 489–507.Google Scholar
  35. Hezarkhani, A. (2006). Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran. Journal of Asian Earth Sciences, 27(3), 326–340.Google Scholar
  36. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. New York: Springer.Google Scholar
  37. Jamali, H., Dilek, Y., Daliran, F., Yaghubpur, A., & Mehrabi, B. (2010). Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran. International Geology Review, 52(4–6), 608–630.Google Scholar
  38. Jolliffe, I. (2011). Principal component analysis. In International encyclopedia of statistical science (pp. 1094–1096). Springer, Berlin, Heidelberg.Google Scholar
  39. Maghsoudi, A., Rahmani, M., & Rashidi, B. (2005). Gold deposits and indications of Iran Pars (Arian Zamin) geology research center.Google Scholar
  40. Maghsoudi, A., Yazdi, M., Mehrpartou, M., Vosoughi, M., & Younesi, S. (2014). Porphyry Cu–Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran. Journal of Asian Earth Sciences, 79, 932–941.Google Scholar
  41. McKay, G., & Harris, J. R. (2016). Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25(2), 125–143.Google Scholar
  42. Mehrpartou, M. (1993). Geological map of Varzaghan, scale 1: 1,000,000. Geological Survey of Iran.Google Scholar
  43. Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Natural Resources Research, 10(3), 209–226.Google Scholar
  44. Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.Google Scholar
  45. Paasche, H., & Eberle, D. (2009). Rapid integration of large airborne geophysical data suites using a fuzzy partitioning cluster algorithm: A tool for geological mapping and mineral exploration targeting. Exploration Geophysics, 40(3), 277–287.Google Scholar
  46. Pan, G., & Harris, D. P. (2000). Information synthesis for mineral exploration. New York: Oxford University Press.Google Scholar
  47. Parsa, M., Maghsoudi, A., & Ghezelbash, R. (2016a). Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: A comparison of U-spatial statistics and fractal models. Arabian Journal of Geosciences, 9(4), 260.Google Scholar
  48. Parsa, M., Maghsoudi, A., & Yousefi, M. (2017). An improved data-driven fuzzy mineral prospectivity mapping procedure; cosine amplitude-based similarity approach to delineate exploration targets. International Journal of Applied Earth Observation and Geoinformation, 58, 157–167.Google Scholar
  49. Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016b). Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. Journal of Geochemical Exploration, 165, 111–124.Google Scholar
  50. Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016c). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114, 228–241.Google Scholar
  51. Pazand, K., & Hezarkhani, A. (2015). Porphyry Cu potential area selection using the combine AHP-TOPSIS methods: A case study in Siahrud area (NW, Iran). Earth Science Informatics, 8(1), 207–220.Google Scholar
  52. Pirajno, F. (2010). Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: Examples from NW China and Altay-Sayan (Siberia). Journal of Geodynamics, 50(3), 325–346.Google Scholar
  53. Porwal, A., & Carranza, E. J. M. (2015). Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews, 71, 477–483.Google Scholar
  54. Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12(1), 1–25.Google Scholar
  55. Porwal, A., Carranza, E. J. M., & Hale, M. (2006). Bayesian network classifiers for mineral potential mapping. Computers and Geosciences, 32(1), 1–16.Google Scholar
  56. Porwal, A., Gonzalez-Alvarez, I., Markwitz, V., McCuaig, T. C., & Mamuse, A. (2010). Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geology Reviews, 38(3), 184–196.Google Scholar
  57. Ranjbar, H., Masoumi, F., & Carranza, E. J. M. (2011). Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area, Iran. International Journal of Remote Sensing, 32(12), 3309–3327.Google Scholar
  58. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.Google Scholar
  59. Shyur, H. J., & Shih, H. S. (2006). A hybrid MCDM model for strategic vendor selection. Mathematical and Computer Modelling, 44(7), 749–761.Google Scholar
  60. Sillitoe, R. H. (2010). Porphyry copper systems. Economic geology, 105(1), 3–41.Google Scholar
  61. Tangestani, M. H., & Moore, F. (2001). Comparison of three principal component analysis techniques to porphyry copper alteration mapping: A case study, Meiduk area, Kerman, Iran. Canadian Journal of Remote Sensing, 27(2), 176–182.Google Scholar
  62. Tangestani, M. H., & Moore, F. (2002). The use of Dempster–Shafer model and GIS in integration of geoscientific data for porphyry copper potential mapping, north of Shahr-e-Babak, Iran. International Journal of Applied Earth Observation and Geoinformation, 4(1), 65–74.Google Scholar
  63. Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83, 200–214.Google Scholar
  64. Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers and Geosciences, 74, 97–109.Google Scholar
  65. Yousefi, M., & Carranza, E. J. M. (2015b). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers and Geosciences, 79, 69–81.Google Scholar
  66. Yousefi, M., & Carranza, E. J. M. (2015c). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers and Geosciences, 83, 72–79.Google Scholar
  67. Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25(1), 3–18.Google Scholar
  68. Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14(1), 45–58.Google Scholar
  69. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.Google Scholar
  70. Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111(1), 13–22.Google Scholar
  71. Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers and Geosciences, 37(12), 1967–1975.Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  • Reza Ghezelbash
    • 1
  • Abbas Maghsoudi
    • 1
    Email author
  • Emmanuel John M. Carranza
    • 2
  1. 1.Faculty of Mining and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Geological Sciences, School of Agricultural, Earth and Environmental SciencesUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations