Calibration of Genetic Algorithm Parameters for Mining-Related Optimization Problems

  • Martha E. Villalba Matamoros
  • Mustafa KumralEmail author
Original Paper


Genetic algorithms (GA) are widely used to solve engineering optimization problems. The quality and performance of the solution generated strongly depend on the selection of the GA parameter values (crossover and mutation rates and population size). We propose an approach based on full factorial and response surface methodology experimental designs to calibrate GA parameters such that the objective function is maximized/minimized and the relative importance of the parameters is quantified. The approach was tested by applying it to stope optimization of underground mines, where profit can vary ± 7% based solely on GA parameters. Results showed that: (1) a larger population size did not always increase solution time; (2) solution time was positively related to crossover and mutation rates; and (3) simultaneous analysis of solution time and profit illustrated the trade-off between acceptable computing time and profit desirability through GA parameter selection. This approach can be used to calibrate parameters of other metaheuristics.


Underground mine planning Genetic algorithms (GA) GA parameters Stope layout optimization Response surface methodology 



This research was conducted with financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC Fund # 242984), and we thank NSERC for this support.


  1. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. Scholar
  2. Box, G. E., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society (Series B), 13, 1–45.Google Scholar
  3. Clifton Young, J. (1996). Blocking, replication, and randomization—The key to effective experimentation: A case study. Quality Engineering, 9(2), 269–277.CrossRefGoogle Scholar
  4. Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.CrossRefGoogle Scholar
  5. Deutsch, C. V., & Journel, A. G. (1998). Geostatistical software library and user’s guide. New York: Oxford University Press.Google Scholar
  6. Eiben, Á. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2), 124–141. Scholar
  7. Ferreira, S. L., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., et al. (2007). Box–Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. Scholar
  8. Goodfellow, R. C., & Dimitrakopoulos, R. (2016). Global optimization of open pit mining complexes with uncertainty. Applied Soft Computing, 40, 292–304.CrossRefGoogle Scholar
  9. Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems Man and Cybernetics, 16(1), 122–128. Scholar
  10. Helland, I. S. (2000). Model reduction for prediction in regression models. Scandinavian Journal of Statistics, 27(1), 1–20.CrossRefGoogle Scholar
  11. Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). New Jersey: Prentice-Hall.Google Scholar
  12. Kumral, M. (2004). Optimal location of a mine facility by genetic algorithms. IMM Transactions, Mining Technology, 113(2), A83–A88. Scholar
  13. Kumral, M., & Dowd, P. (2005). A simulated annealing approach to mine production scheduling. Journal of the Operational Research Society, 56(8), 922–930.CrossRefGoogle Scholar
  14. Lamghari, A., & Dimitrakopoulos, R. (2012). A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty. European Journal of Operational Research, 222(3), 642–652.CrossRefGoogle Scholar
  15. Leite, A., & Dimitrakopoulos, R. (2007). Stochastic optimisation model for open pit mine planning: Application and risk analysis at copper deposit. Mining Technology, 116(3), 109–118.CrossRefGoogle Scholar
  16. Manchuk, J., & Deutsch, C. V. (2008). Optimizing stope designs and sequences in underground mines. SME Transactions, 324, 67–75.Google Scholar
  17. Melvin, T. (2000). Response surface optimization using JMP Software. Baltimore: Qualistics.Google Scholar
  18. Mitchell, M. (1999). An introduction to genetic algorithms. Cambridge: Massachusetts Institute of Technology.Google Scholar
  19. Montgomery, D. C. (1997). Design and analysis of experiments. New York: Wiley.Google Scholar
  20. Nannen, V., & Eiben, A. E. (2007). Relevance estimation and value calibration of evolutionary algorithm parameters. Paper presented at the 20th international joint conference on artificial intelligence, Hyderabad, India,Google Scholar
  21. Osman, I. H., & Laporte, G. (1996). Metaheuristics: A bibliography. New York: Springer.Google Scholar
  22. Pandey, H. M., Chaudhary, A., & Mehrotra, D. (2014). A comparative review of approaches to prevent premature convergence in GA. Applied Soft Computing, 24, 1047–1077. Scholar
  23. Rayward-Smith, V. J. (1996). Modern heuristic techniques. In V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, & G. D. Smith (Eds.), Modern heuristic search methods (pp. 1–25). New York: Wiley.Google Scholar
  24. Reeves, C. (2003). Genetic algorithms. Handbook of metaheuristics (pp. 55–82). New York: Kluwer Academic.CrossRefGoogle Scholar
  25. Ruiseco, J. R., & Kumral, M. (2017). A practical approach to mine equipment sizing in relation to dig-limit optimization in complex orebodies: Multi-rock type, multi-process, and multi-metal case. Natural Resources Research, 26(1), 23–35.CrossRefGoogle Scholar
  26. Ruiseco, J. R., Williams, J., & Kumral, M. (2016). Optimizing ore–waste dig-limits as part of operational mine planning through genetic algorithms. Natural Resources Research, 25(4), 473–485.CrossRefGoogle Scholar
  27. Sauvageau, M., & Kumral, M. (2016). Genetic algorithms for the optimisation of the Schwartz-Smith two-factor model: A case study on a copper deposit. International Journal of Mining, Reclamation and Environment, 32, 1–19.Google Scholar
  28. Shi, B., Bloom, L., & Mueller, U. (2000). Applications of conditional simulation to a positively skewed platinum mineralization. Natural Resources Research, 9(1), 53–64.CrossRefGoogle Scholar
  29. Shishvan, M. S., & Sattarvand, J. (2015). Long term production planning of open pit mines by ant colony optimization. European Journal of Operational Research, 240(3), 825–836.CrossRefGoogle Scholar
  30. Snyman, J. (2005). Practical mathematical optimization: An introduction to basic optimization theory and classical and new gradient-based algorithms (Vol. 97). New York: Springer.Google Scholar
  31. Telford, J. K. (2007). A brief introduction to design of experiments. Johns Hopkins APL Technical Digest, 27(3), 224–232.Google Scholar
  32. Verhoeff, R. L. A. (2017). Using genetic algorithms for underground stope design optimization in mining. A stochastic analysis. M.Sc. thesis, Delft University of Technology.Google Scholar
  33. Villalba, M. E., & Kumral, M. (2017). Heuristic stope layout optimization accounting for variable stope dimensions and dilution management. International Journal of Mining and Mineral Engineering, 8(1), 1–18. Scholar
  34. Villalba, M. E., & Kumral, M. (2018a). Underground mine planning: Stope layout optimization under uncertainty using genetic algorithms. International Journal of Mining, Reclamation and Environment (in press).
  35. Villalba, M. E., & Kumral, M. (2018b). A value adding approach to hard-rock underground mining operations: Balancing orebody orientation and mining direction (under submission).Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2018

Authors and Affiliations

  1. 1.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada

Personalised recommendations