Advertisement

Synthesis and structural characterization of iron-cementite nanoparticles encapsulated in carbon matrix

  • Leon AvakyanEmail author
  • Aram Manukyan
  • Alena Bogdan
  • Harutyun Gyulasaryan
  • José Coutinho
  • Ekaterina Paramonova
  • Galina Sukharina
  • Vasiliy Srabionyan
  • Eduard Sharoyan
  • Lusegen Bugaev
Research Paper

Abstract

Carbon-encapsulated iron-cementite (Fe-Fe3C) nanoparticles, promising nanomaterials for medicine due to their valuable magnetic properties, were synthesized by a single-step solid-state pyrolysis of iron phthalocyanine. To obtain required magnetic characteristics of such nanoparticles by governing of the pyrolysis conditions one needs reliable structural information of the atomic architecture of the obtained nanoparticles of composition (Fe-Fe3C), in which Fe atoms have different types of the local surrounding. The latter complicates the structural characterization of samples, which was performed using the complementary methods of TEM, SAXS, XRD, XANES, and EXAFS and the results of simulations by the method of reactive force field molecular dynamics (ReaxFF MD). The size of the particles is on the order of 10 nm with cementite concentration of about 60–70 wt%. The simulations enabled to reveal that the most plausible combinations of the local structures of Fe atoms in (Fe-Fe3C) nanoparticle result in the difference of corresponding atomic pair radial distribution functions relatively to iron (RDF), which can be further filtered through the comparison with experimentally obtained RDF for iron atoms in the studied sample. Such RDF was derived from experimental Fe K-edge EXAFS in the sample by Fourier transform multi-shell processing within harmonic approximation and using the results of the analysis of SAXS, XRD, and XANES. The used approach, based on the filtering of ReaxFF MD-calculated RDFs via comparison with the EXAFS derived RDF, revealed that for particles of composition (Fe-Fe3C) with XRD derived iron:cementite ratio of \(\sim 40\):60 wt% and sizes bigger than 4 nm, the architecture with iron in core region of particle and cementite in its shell (Fe@Fe3C) is the most probable for the mean nanoparticle comparing with architectures of the inverted core-shell (Fe3C@Fe) or the mixture of iron and cementite phases (Fe+Fe3C).

Keywords

Atomic structure of particles Pair radial distribution function Molecular dynamics EXAFS XANES XRD SAXS 

Notes

Acknowledgments

The authors acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and thank Dr. Olivier Mathon for assistance in using beamline BM-23 for X-ray absorption experiments. The authors also acknowledge the BESSY-II for provision of synchrotron radiation facilities at μ SPOT beamline for X-ray scattering experiments and Dr. Ivo Zizak for his help.

Funding information

This work was supported by the RA MES State Committee of Science and Russian Foundation for Basic Research in the frames of the joint research projects SCS 18RF-120 and RFBR 18-52-05004 respectively. Armenian authors received a research grant # condmatex-4771 from the Armenian National Science and Education Fund (ANSEF) based in New York, USA. J.C. received support from the Fundação para a Ciîncia e a Tecnologia (FCT) under contract UID/CTM/50025/2013, co-funded by FEDER funds through the COMPETE 2020 Program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

(MP4 58.8 MB)

11051_2019_4698_MOESM2_ESM.pdf (1.8 mb)
(PDF 1.80 MB)

References

  1. Aktulga H, Fogarty J, Pandit S, Grama A (2012) Parallel reactive molecular dynamics: numerical methods and algorithmic techniques. Parallel Computing 38(4-5):245–259.  https://doi.org/10.1016/j.parco.2011.08.005 CrossRefGoogle Scholar
  2. Alsina MA, Gaillard JF (2018) Structural characterization of metal complexes in aqueous solutions: a XAS study of stannous fluoride. Phys Chem Chem Phys 20:12727–12735.  https://doi.org/10.1039/C8CP01461B CrossRefGoogle Scholar
  3. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58:7565–7576.  https://doi.org/10.1103/PhysRevB.58.7565 CrossRefGoogle Scholar
  4. Blanco-Andujar C, Walter A, Cotin G, Bordeianu C, Mertz D, Felder-Flesch D, Begin-Colin S (2016) Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 11 (14):1889–1910.  https://doi.org/10.2217/nnm-2016-5001 CrossRefGoogle Scholar
  5. Bocharov D, Chollet M, Krack M, Bertsch J, Grolimund D, Martin M, Kuzmin A, Purans J, Kotomin E (2017) Analysis of the U L3-edge X-ray absorption spectra in UO2 using molecular dynamics simulations. Prog Nucl Energy 94:187–193.  https://doi.org/10.1016/j.pnucene.2016.07.017 CrossRefGoogle Scholar
  6. Bock DC, Pelliccione CJ, Zhang W, Timoshenko J, Knehr KW, West AC, Wang F, Li Y, Frenkel AI, Takeuchi ES, Takeuchi KJ, Marschilok AC (2017) Size dependent behavior of Fe3O4 crystals during electrochemical (de)lithiation: an in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation. Phys Chem Chem Phys 19:20867–20880.  https://doi.org/10.1039/C7CP03312E CrossRefGoogle Scholar
  7. Bugaev LA, van Bokhoven JA, Sokolenko AP, Latokha YV, Avakyan LA (2005) Local structure of aluminum in zeolite mordenite as affected by temperature. J Phys Chem B 109(21):10771–10778.  https://doi.org/10.1021/jp0508709 CrossRefGoogle Scholar
  8. Chill ST, Anderson RM, Yancey DF, Frenkel AI, Crooks RM, Henkelman G (2015) Probing the limits of conventional extended x-ray absorption fine structure analysis using thiolated gold nanoparticles. ACS Nano 9(4):4036–4042.  https://doi.org/10.1021/acsnano.5b00090 CrossRefGoogle Scholar
  9. Coral DF, Mendoza Zélis P, Marciello M, Morales M d P, Craievich A, Sánchez FH, Fernández van Raap MB (2016) Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir 32(5):1201–1213.  https://doi.org/10.1021/acs.langmuir.5b03559 CrossRefGoogle Scholar
  10. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409.  https://doi.org/10.1021/jp004368u CrossRefGoogle Scholar
  11. Dutz S, Hergt R (2014) Magnetic particle hyperthermia – a promising tumour therapy? Nanotechnology 25(45):452001.  https://doi.org/10.1088/0957-4484/25/45/452001 CrossRefGoogle Scholar
  12. Eremenko M, Krayzman V, Gagin A, Levin I (2017) Advancing reverse Monte Carlo structure refinements to the nanoscale. J Appl Crystallogr 50(6):1561–1570.  https://doi.org/10.1107/S1600576717013140 CrossRefGoogle Scholar
  13. Giordano C, Kraupner A, Wimbush SC, Antonietti M (2010) Iron carbide: an ancient advanced material. Small 6(17):1859–1862.  https://doi.org/10.1002/smll.201000437 CrossRefGoogle Scholar
  14. Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya NR, Moeck P, Downs RT, Le Bail A (2012) Crystallography open database (cod): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40(D1):D420–D427.  https://doi.org/10.1093/nar/gkr900 CrossRefGoogle Scholar
  15. Hammersley AP (1998) Fit2d v9.129 reference manual v3.1. Internal Report ESRF98HA01T, ESRFGoogle Scholar
  16. Harrison JA, Schall JD, Maskey S, Mikulski PT, Knippenberg MT, Morrow BH (2018) Review of force fields and intermolecular potentials used in atomistic computational materials research. Appl Phys Rev 5(3):031104.  https://doi.org/10.1063/1.5020808 CrossRefGoogle Scholar
  17. Ingham B (2015) X-ray scattering characterisation of nanoparticles. Crystallogr Rev 21(4):229–303.  https://doi.org/10.1080/0889311X.2015.1024114 CrossRefGoogle Scholar
  18. Jiang WJ, Gu L, Li L, Zhang Y, Zhang X, Zhang LJ, Wang JQ, Hu JS, Wei Z, Wan LJ (2016) Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3c nanoparticles boost the activity of Fe–Nx. J Am Chem Soc 138(10):3570–3578.  https://doi.org/10.1021/jacs.6b00757 CrossRefGoogle Scholar
  19. Kumar R, Sahoo B (2018a) Carbon nanotubes or carbon globules: optimization of the pyrolytic synthesis parameters and study of the magnetic properties. Nano-Structures & Nano-Objects 14:131–137.  https://doi.org/10.1016/j.nanoso.2018.01.014
  20. Kumar R, Sahoo B (2018b) Investigation of disorder in carbon encapsulated core-shell Fe/Fe3C nanoparticles synthesized by one-step pyrolysis. Diamond Relat Mater 90:62–71.  https://doi.org/10.1016/j.diamond.2018.10.003
  21. Kumar R, Sahoo B (2018c) One-step pyrolytic synthesis and growth mechanism of core-shell type Fe/Fe3C-graphite nanoparticles-embedded carbon globules. Nano-Structures & Nano-Objects 16:77–85.  https://doi.org/10.1016/j.nanoso.2018.05.005
  22. Kumar R, Choudhary HK, Pawar SP, Bose S, Sahoo B (2017a) Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Phys Chem Chem Phys 19:23268–23279.  https://doi.org/10.1039/C7CP03175K
  23. Kumar R, Rajendiran R, Choudhary HK, Naveen Kumar GM, Balaiah B, Anupama AV, Sahoo B (2017b) Role of pyrolysis reaction temperature and heating-rate in the growth and morphology of carbon nanostructures. Nano-Structures & Nano-Objects 12:229–238.  https://doi.org/10.1016/j.nanoso.2017.11.002
  24. Kumar R, Anupama AV, Kumaran V, Sahoo B (2018) Effect of solvents on the structure and magnetic properties of pyrolysis derived carbon globules embedded with iron/iron carbide nanoparticles and their applications in magnetorheological fluids. Nano-Structures & Nano-Objects 16:167–173.  https://doi.org/10.1016/j.nanoso.2018.06.002 CrossRefGoogle Scholar
  25. Lamberti C, van Bokhoven JA (2016) X-ray absorption and x-ray emission spectroscopy: theory and applications, John Wiley & Sons, Ltd, chap X-ray absorption and emission spectroscopy for catalysis.  https://doi.org/10.1002/9781118844243.ch13
  26. Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dułak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Jensen PB, Kermode J, Kitchin JR, Kolsbjerg EL, Kubal J, Kaasbjerg K, Lysgaard S, Maronsson JB, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW (2017) The atomic simulation environment - a Python library for working with atoms. J Phys: Condens Matter 29(27):273002.  https://doi.org/10.1088/1361-648X/aa680e CrossRefGoogle Scholar
  27. Leontyev IN, Kuriganova AB, Allix M, Rakhmatullin A, Timoshenko PE, Maslova OA, Mikheykin AS, Smirnova NV (2018) On the evaluation of the average crystalline size and surface area of platinum catalyst nanoparticles. Phys Status Solidi B 255(10):1800240.  https://doi.org/10.1002/pssb.201800240 CrossRefGoogle Scholar
  28. Li T, Senesi AJ, Lee B (2016) Small angle x-ray scattering for nanoparticle research. Chem Rev 116(18):11128–11180.  https://doi.org/10.1021/acs.chemrev.5b00690 CrossRefGoogle Scholar
  29. López-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogués J (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 553:1–32.  https://doi.org/10.1016/j.physrep.2014.09.007 CrossRefGoogle Scholar
  30. Luo N, Li X, Wang X, Yan H, Zhang C, Wang H (2010) Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method. Carbon 48(13):3858–3863.  https://doi.org/10.1016/j.carbon.2010.06.051 CrossRefGoogle Scholar
  31. Manukyan A, Mirzakhanyan A, Badalyan G, Shirinyan G, Fedorenko A, Lianguzov N, Yuzyuk Y, Bugaev L, Sharoyan E (2012a) Nickel nanoparticles in carbon structures prepared by solid-phase pyrolysis of nickel-phthalocyanine. J Nanopart Res 14:1–7.  https://doi.org/10.1007/s11051-012-0982-6
  32. Manukyan AS, Mirzakhanyan AA, Khachatryan TK, Badalyan GR, Abdulvakhidov KG, Bugaev LA, Sharoyan EG (2012b) Copper-carbon nanocomposites prepared by sold-phase pyrolysis of copper phthalocyanine. J Contemp Physics (Armenian Ac Sci) 47(6):292–295.  https://doi.org/10.3103/S1068337212060084
  33. Meffre A, Mehdaoui B, Kelsen V, Fazzini PF, Carrey J, Lachaize S, Respaud M, Chaudret B (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12(9):4722–4728.  https://doi.org/10.1021/nl302160d CrossRefGoogle Scholar
  34. Moisala A, Nasibulin AG, Kauppinen EI (2003) The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes – a review. J Phys: Condens Matter 15(42):S3011.  https://doi.org/10.1088/0953-8984/15/42/003 CrossRefGoogle Scholar
  35. Mourdikoudis S, Pallares RM, Thanh NTK (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934.  https://doi.org/10.1039/C8NR02278J CrossRefGoogle Scholar
  36. Neder RB (2014) PDF analysis of nanoparticles, chap 3. Wiley-Blackwell, pp 155–200.  https://doi.org/10.1002/9781118695708.ch3
  37. Newville M (2013) Larch: an analysis package for XAFS and related spectroscopies. J Phys: Conf Ser 430(1):012007.  https://doi.org/10.1088/1742-6596/430/1/012007 CrossRefGoogle Scholar
  38. Obaidat IM, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5(1):63–89.  https://doi.org/10.3390/nano5010063 CrossRefGoogle Scholar
  39. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36(13):R167.  https://doi.org/10.1088/0022-3727/36/13/201 CrossRefGoogle Scholar
  40. Pérez-Rodríguez S, Pastor E, Lázaro M (2017) Noble metal-free catalysts supported on carbon for CO2 electrochemical reduction. J CO2 Util 18(Supplement C):41–52.  https://doi.org/10.1016/j.jcou.2017.01.010 CrossRefGoogle Scholar
  41. Piktel E, Niemirowicz K, Wa̧tek M, Wollny T, Deptuła P, Bucki R (2016) Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. Journal of Nanobiotechnology 14(1):39.  https://doi.org/10.1186/s12951-016-0193-x CrossRefGoogle Scholar
  42. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117 (1):1–19.  https://doi.org/10.1006/jcph.1995.1039 CrossRefGoogle Scholar
  43. Poiarkova AV, Rehr JJ (1999) Multiple-scattering x-ray-absorption fine-structure Debye-Waller factor calculations. Phys Rev B 59:948–957.  https://doi.org/10.1103/PhysRevB.59.948 CrossRefGoogle Scholar
  44. Ravel B, Newville M (2005) Athena, artemis, hephaestus: data analysis for x-ray absorption spectroscopy using ifeffit. J Sync Rad 12 (4):537–541.  https://doi.org/10.1107/S0909049505012719 CrossRefGoogle Scholar
  45. Rehr JJ, Kas JJ, Vila FD, Newville M (2017) Theory and analysis of XAFS. Springer International Publishing, Berlin, pp 13–50.  https://doi.org/10.1007/978-3-319-43866-5_2 Google Scholar
  46. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, Junkermeier C, Engel-Herbert R, Janik MJ, Aktulga HM, Verstraelen T, Grama A, van Duin ACT (2016) The ReaxFF reactive force-field: development, applications and future directions. npj Comput Mater 2:15011.  https://doi.org/10.1038/npjcompumats.2015.11 CrossRefGoogle Scholar
  47. Soldatov MA, Göttlicher J, Kubrin SP, Guda AA, Lastovina TA, Bugaev AL, Rusalev YV, Soldatov AV, Lamberti C (2018) Insight from x-ray absorption spectroscopy to octahedral/tetrahedral site distribution in Sm-doped iron oxide magnetic nanoparticles. J Phys Chem C 122(15):8543–8552.  https://doi.org/10.1021/acs.jpcc.7b12797 CrossRefGoogle Scholar
  48. Toby BH, Von Dreele RB (2013) GSAS-ii: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46(2):544–549.  https://doi.org/10.1107/S0021889813003531 CrossRefGoogle Scholar
  49. Vao-soongnern V, Pipatpanukul C, Horpibulsuk S (2015) A combined x-ray absorption spectroscopy and molecular dynamic simulation to study the local structure potassium ion in hydrated montmorillonite. J Mater Sci 50(21):7126–7136.  https://doi.org/10.1007/s10853-015-9269-5 CrossRefGoogle Scholar
  50. Yang DS, Fazzini DR, Morrison TI, Tröger L, Bunker G (1997) Modeling of pair distribution functions for XAFS in disordered systems. J Non-Cryst Solids 210(2-3):275–286.  https://doi.org/10.1016/S0022-3093(96)00577-7 CrossRefGoogle Scholar
  51. Yang TI, Chang SH (2017) Controlled synthesis of metallic iron nanoparticles and their magnetic hyperthermia performance in polyaniline composite nanofibers. Nanotechnology 28(5):055601.  https://doi.org/10.1088/1361-6528/28/5/055601 CrossRefGoogle Scholar
  52. Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of x-ray-absorption spectra. Phys Rev B 52:2995–3009.  https://doi.org/10.1103/PhysRevB.52.2995 CrossRefGoogle Scholar
  53. Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA (2016) Ultrasmall inorganic nanoparticles: state-of-the-art and perspectives for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine 12 (6):1663–1701.  https://doi.org/10.1016/j.nano.2016.02.019 CrossRefGoogle Scholar
  54. Zhang D, Wei S, Kaila C, Su X, Wu J, Karki AB, Young DP, Guo Z (2010) Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2:917–919.  https://doi.org/10.1039/C0NR00065E CrossRefGoogle Scholar
  55. Zizak I, für Materialien und Energie HZB (2016) The mySpot beamline at BESSY II. J large-scale Res Facil JLSRF 2:A102.  https://doi.org/10.17815/jlsrf-2-113 CrossRefGoogle Scholar
  56. Zou C, van Duin ACT, Sorescu DC (2012) Theoretical investigation of hydrogen adsorption and dissociation on iron and iron carbide surfaces using the ReaxFF reactive force field method. Top. Catal. 55 (5):391–401.  https://doi.org/10.1007/s11244-012-9796-0 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • Leon Avakyan
    • 1
    Email author
  • Aram Manukyan
    • 2
  • Alena Bogdan
    • 1
  • Harutyun Gyulasaryan
    • 2
  • José Coutinho
    • 3
  • Ekaterina Paramonova
    • 4
  • Galina Sukharina
    • 1
  • Vasiliy Srabionyan
    • 1
  • Eduard Sharoyan
    • 2
  • Lusegen Bugaev
    • 2
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Institute for Physical ResearchNational Academy of Sciences of ArmeniaAshtarakArmenia
  3. 3.Department of Physics and I3NUniversity of Aveiro, Campus SantiagoAveiroPortugal
  4. 4.Institute of Mathematical Problems of BiologyKeldysh Institute of Applied Mathematics, RASPushchinoRussia

Personalised recommendations