Advertisement

Myristic acid as surface modifier of calcium carbonate hydrophobic nanoparticles

  • Laiza Marinho Racca
  • Luíz Carlos Bertolino
  • Christine Rabello Nascimento
  • Ana Maria F. de Sousa
  • Leila Y. Reznik
  • Lídia Yokoyama
  • Ana Lúcia Nazareth da SilvaEmail author
Review
  • 7 Downloads

Abstract

Several papers describe the treatment of calcium carbonate (CaCO3) with stearic acid acting as a surface modifier, in order to avoid particle coalescence and, at the same time, enhancing filler hydrophobic properties. However, there is still a lack of data relating the efficiency of a traditional modifier used, stearic acid, in the synthesis of CaCO3 nanofiller with other modifiers in terms of inhibition of the agglomeration process during the synthesis. Thus, the present work evaluates the stability of CaCO3 nanoparticles obtained by a carbonation reaction, considering the contents of the crystallization inhibitor (trisodium phosphate-Na3PO4) and the surface modifier (myristic acid) applied. In order to achieve an efficient carbonation process, a bubbling system was used. The results showed that higher surface modifier and crystallization inhibitor contents lead to a narrower particle size distribution and a lower particle size. Comparing the CaCO3 nanoparticles coated with myristic acid (CaCO3-MA) and with stearic acid (CaCO3-SA), it was observed that CaCO3-MA has a higher thermal stability and a lower particle size in relation to CaCO3-SA. Besides this, a more spherical geometry was achieved for CaCO3-MA nanoparticles due to the bubbling system applied during the carbonation reaction.

Graphical abstract

The present study compare the properties between CaCO3 nanoparticles synthesized with myristic acid (MA) with a commercial CaCO3 grade, modified with stearic acid (SA). The results showed that CaCO3-MA has a higher thermal stability and a lower particle size in relation to CaCO3-SA. Beyond this, shape more spherical was achieved for CaCO3-MA nanoparticles due to the bubbling system used during carbonation reaction.

Keywords

Calcium carbonate Nanoparticles Synthesis Surface modifiers Myristic acid Stearic acid 

Notes

Acknowledgments

The authors thank LAGOS company for CaCO3-SA donation.

Funding information

This work was financed by Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, and Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

References

  1. Andreassen JP (2005) Formation mechanism and morphology in precipitation of vaterite-nano-aggregation or crystal growth? J Cryst Growth.  https://doi.org/10.1016/j.jcrysgro.2004.09.090 CrossRefGoogle Scholar
  2. Bhanvase BA, Pinjari DV, Gogate PR, Sonawane SH, Pandit AB (2011) Process intensification of encapsulation of functionalized CaCO3 nanoparticles using ultrasound assisted emulsion polymerization. Chem Eng Process Process Intensif.  https://doi.org/10.1016/j.cep.2011.09.002 CrossRefGoogle Scholar
  3. Burdett G, Bard D, Kelly A, Thorpe A (2013) The effect of surface coatings on the dustiness of a calcium carbonate nanopowder. J Nanopart Res.  https://doi.org/10.1007/s11051-012-1311-9
  4. Cao Z, Daly M, Clémence L, Geever LM, Major I, Higginbotham CL, Devine DM (2016) Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2016.03.205 CrossRefGoogle Scholar
  5. Chen X, Zhu Y, Guo Y, Zhou B, Zhao X, Du Y, Lei H, Li M, Wang Z (2010) Carbonation synthesis of hydrophobic CaCO3 at room temperature. Colloids Surf A Physicochem Eng Asp.  https://doi.org/10.1016/j.colsurfa.2009.10.029 CrossRefGoogle Scholar
  6. Chen S, Clfen H, Antonietti M, Yu S (2013) Ethanol assisted synthesis of pure and stable amorphous calcium carbonate nanoparticles. Chem Commun.  https://doi.org/10.1039/c3cc45427d CrossRefGoogle Scholar
  7. Chibowki E, Hotysz L, Szczés A (2003) Time dependent changes in zeta potential of freshly precipitated calcium carbonate. Colloids Surf A Physicochem Eng Asp.  https://doi.org/10.1016/S0927-7757(03)00232-2 CrossRefGoogle Scholar
  8. Dey S, Dhal GC, Mohan D, Prasad R (2018) The choice of precursors in the synthesizing of CuMnOx catalysts for maximizing CO oxidation. Int J Ind Chem.  https://doi.org/10.1007/s40090-018-0150-7 CrossRefGoogle Scholar
  9. Dey S, Dhal GC, Mohan D, Prasad R, Gupta RN (2019) Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2018.02.048 CrossRefGoogle Scholar
  10. Donnely FC, Purcell-Milton F, Framont V, Cleary O, Dunne PW, Gun’ko YK (2017) Synthesis of CaCO3 nano- and micro- particles by dry ice carbonation. Chem Commun.  https://doi.org/10.1039/c7cc01420a CrossRefGoogle Scholar
  11. El-Sheikh SM, El-Sherbiny S, Barhoum A, Deng Y (2013) Effects of cationic surfactant during precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloids Surf A Physicochem Eng Asp.  https://doi.org/10.1016/j.colsurfa.2013.01.020 CrossRefGoogle Scholar
  12. Ferández-Díaz L, Fernández-González Á, Prieto M (2010) The role of sulfate groups in controlling CaCO3 polymorphism. Geochim Cosmochim Acta.  https://doi.org/10.1016/j.gca.2010.08.010 CrossRefGoogle Scholar
  13. Fu S, Feng X, Lauke B, Mai Y (2008) Effects of particulate size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B.  https://doi.org/10.1016/j.compositesb.2008.01.002 CrossRefGoogle Scholar
  14. Fuad MYA, Hanim H, Zarina R, Ishak ZAM, Hassan A (2010) Polypropylene/calcium carbonate nanocomposites – effects of processing techniques and maleated polypropylene compatibilizer. Express Polym Lett.  https://doi.org/10.3144/expresspolymlett.2010.76 CrossRefGoogle Scholar
  15. García-Carmona J, Gómez-Morales J, Fraile-Saiz J, Redríguez-Clemente R (2003) Morphological characteristics and aggregation of calcite crystals obtained by bubbling CO2 through a Ca(OH)2 suspension in the presence of additives. Powder Technol.  https://doi.org/10.1016/S0032-5910(02)00209-7 CrossRefGoogle Scholar
  16. Ghalia MA, Hassan A, Yussuf A (2011) Mechanical and thermal properties of calcium carbonate. J Appl Polym Sci.  https://doi.org/10.1002/app.33570 CrossRefGoogle Scholar
  17. Grassmann O, Löbmann P (2004) Biomimetic nucleation and growth of CaCO3 in hydrogels incorporating carboxylate groups. Biomaterials.  https://doi.org/10.1016/S0142-9612(03)00526-X CrossRefGoogle Scholar
  18. Jaji AZ, Zakaria ZAB, Mahmud R, Loqman MY, Hezmee MNM, Abba Y, Isa T, Mahmood SK (2017) Safety assessments of subcutaneous doses of aragonite calcium carbonate nanocrystals in rats. J Nanopart Res.  https://doi.org/10.1007/s11051-017-3849-z
  19. Jiang J, Chen SF, Liu L, Yao HB, Qiu YH, Gao MR, Yu SH (2009) Template-free polymorph discrimination and synthesis of calcium carbonate minerals. Chem Commun.  https://doi.org/10.1039/b911219g
  20. Jiang J, Zhang Y, Yang X, He X, Tang X, Liu J (2014) Assemblage of Nano-Calcium Carbonate Particles on Palmitic Acid Template. Adv Powder Technol.  https://doi.org/10.1016/j.apt.2013.10.001 CrossRefGoogle Scholar
  21. Kezuka Y, Kuma Y, Nakai S, Matsubara K, Tajika M (2018) Calcium carbonate chain-like nanoparticles: synthesis, structural characterization and dewaterability. Powder Technol.  https://doi.org/10.1016/j.powtec.2018.05.011 CrossRefGoogle Scholar
  22. Kilic S, Toprak G, Ozdemir E (2016) Stability of CaCO3 in Ca(OH)2 solution. Int J Miner Process.  https://doi.org/10.1016/j.minpro.2015.12.006 CrossRefGoogle Scholar
  23. Kitamura M (2002) Controlling factor of polymorphism in crystallization process. J Cryst Growth.  https://doi.org/10.1016/S0022-0248(01)02277-1 CrossRefGoogle Scholar
  24. Lam TD, Hoang TV, Quang DT, Kim JS (2009) Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanoparticles. Mater Sci Eng A.  https://doi.org/10.1016/j.msea.2008.09.060 CrossRefGoogle Scholar
  25. Liu Q, Wang Q, Xiang L (2008) Influence of polyacrylic acid on the dispersion of calcite nano-particles. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2008.05.232 CrossRefGoogle Scholar
  26. Maas M, Rehage H, Nebel H, Epple M (2007) On the formation of calcium carbonate thin films under Langmuir monolayers of stearic acid. Colloid Polym Sci.  https://doi.org/10.1007/s00396-007-1708-7 CrossRefGoogle Scholar
  27. Ogino T, Suzuki T, Sawada K (1987) The formation and transformation mechanism of calcium carbonate in water. Geochim Cosmochim Acta.  https://doi.org/10.1016/0016-7037(87)90155-4 CrossRefGoogle Scholar
  28. Oral ÇM, Batur E (2018) Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles. Powder Technol.  https://doi.org/10.1016/j.powtec.2018.08.066 CrossRefGoogle Scholar
  29. Özen I, Simsek S (2015) Vital importance of moisture level in all stages of processing form calcium carbonate coating through polyethylene/calcium carbonate compounding to film generation. Powder Technol.  https://doi.org/10.1016/j.powtec.2014.10.038 CrossRefGoogle Scholar
  30. Piekarska K, Piorkowska E, Bojda J (2017) The influence of matrix crystallinity, filler grain size and modification on properties of pla/calcium carbonate composites. Polym Test.  https://doi.org/10.1016/j.polymertesting.2017.06.025 CrossRefGoogle Scholar
  31. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  32. Shen J, Song Z, Qian X, Yang F, Kong F (2010) Nanofillers for papermaking wet and applications. Bio Res 5:1328–1331Google Scholar
  33. Shi X, Rosa R, Lazzeri A (2010) On the coating of precipitated calcium carbonate with stearic acid in aqueous medium. Langmuir.  https://doi.org/10.1021/la904914h CrossRefGoogle Scholar
  34. Stepkowska ET, Pérez-Rodríguez JL, Sayagués MJ, Martínez-Blanes JM (2003) Calcite, vaterite and aragonite forming on cement hydration from liquid and gaseous phase. J Therm Anal Calorim.  https://doi.org/10.1023/A:1025158213560 CrossRefGoogle Scholar
  35. Tong H, Ma WT, Wang LL, Wan P, Hu JM, Cao LX (2004) Control over the crystal phase, shape, size and aggregation of calcium carbonate via L-aspartic acid including process. Biomaterials 25:3923–3929CrossRefGoogle Scholar
  36. Tsuzuki T, Pethick K, McCormick PG (2000) Synthesis of CaCO3 nanoparticles by mechanochemical processing. J Nanopart Res 2:375–380CrossRefGoogle Scholar
  37. Ulkeryildiz E, Kilic S, Ozdemir E (2017) Nano-CaCO3 synthesis by jet flow. Colloids Surf A Physicochem Eng Asp.  https://doi.org/10.1016/j.colsurfa.2016.10.037 CrossRefGoogle Scholar
  38. Wada N, Suda S, Kanamura K, Umegaki T (2004) Formation of thin calcium carbonate films with aragonite and vaterite forms coexisting with polyacrylic acids and chitosan membranes. J Colloid Interface Sci.  https://doi.org/10.1016/j.jcis.2004.06.060 CrossRefGoogle Scholar
  39. Wang CH, Xiao P, Zhao J, Zhao X, Liu Y, Wang Z (2006) Biomimetric synthesis of hydrophobic calcium carbonate nanoparticles via a carbonation route. Powder Technol.  https://doi.org/10.1016/j.powtec.2006.08.016 CrossRefGoogle Scholar
  40. Yang J, Shih S (2010) Preparation of high surface area CaCO3 by bubbling CO2 in aqueous suspensions of Ca(OH)2: effects of (NaPO3)6, Na5P3O10, and Na3PO4 additivies. Powder Technol.  https://doi.org/10.1016/j.powtec.2009.09.020 CrossRefGoogle Scholar
  41. Yang X, Xu G, Chen Y, Wang F, Mao H, Sui W, Bai Y, Gong H (2009) CaCO3 crystallization control by poly(ethylene oxide)–poly(propylene oxide)–poly(ethyleneGoogle Scholar
  42. Zhang Z, Wang C, Yang Z, Chen C, Mai K (2008) Crystallization behavior and melt characteristics of PP nucleated by a novel supported β-nucleating agent. Polymer.  https://doi.org/10.1016/j.polymer.2008.09.009 CrossRefGoogle Scholar
  43. Zhang Q, Ren LY, Sheng YH, Ji YT, Fu J (2010) Control of morphologies and polymorphs of CaCO3 via multi-additives system. Mater Chem Phys.  https://doi.org/10.1016/j.matchemphys.2010.02.053 CrossRefGoogle Scholar
  44. Zhou GT, Yao QZ, Fu SQ, Guan YB (2010) Controlled crystallization of unstable vaterite with distinct morphologies and their polymorphic transition to stable calcite. Eur J Mineral.  https://doi.org/10.1127/0935-1221/2009/0022-2008 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Laiza Marinho Racca
    • 1
  • Luíz Carlos Bertolino
    • 2
  • Christine Rabello Nascimento
    • 3
  • Ana Maria F. de Sousa
    • 4
  • Leila Y. Reznik
    • 5
  • Lídia Yokoyama
    • 5
  • Ana Lúcia Nazareth da Silva
    • 1
    • 6
    Email author
  1. 1.Universidade Federal do Rio de JaneiroInstituto de Macromoléculas Professora Eloisa ManoRio de JaneiroBrazil
  2. 2.Centro de Tecnologia MineralRio de JaneiroBrazil
  3. 3.Programa de Engenharia Metalúrgica (PEMM/COPPE/UFRJ)Universidade Federal do Rio de JaneirRio de JaneiroBrazil
  4. 4.Instituto de QuímicaUniversidade do Estado do Rio de JaneirRio de JaneiroBrasil
  5. 5.Programa de Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos (EPQB)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  6. 6.Programa de Engenharia AmbientalUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations