Advertisement

Quantum mechanical study of chemical reactivity of graphene doped with iron in aqueous medium for applications in biomedicine

  • Ernesto López-Chávez
  • Alberto Garcia-QuirozEmail author
  • Yesica A. Peña-Castañeda
  • José A. I. Díaz-Góngora
  • Fray de Landa Castillo-Alvarado
Research Paper
  • 51 Downloads

Abstract

This work was made using the density functional theory (DFT) computational method, applying it to a graphene-doped theoretical structure with iron atoms, studied as an isolated molecular system in aqueous medium, using the functional GGA PW91, under Material Studio computational platform, to get the chemical reactivity properties of graphene doped with iron (called Fe-G) that can provide knowledge of binding of biomolecules such as peptides, enzymes, and lipids. We present some electrochemistry properties such electron affinity (EA) and ionization potential (IP). The chemical reactivity was characterized by global indicators such as, chemical potential, chemical hardness, and chemical electrophilicity index. In order to find the zones most prone to nucleophilic, electrophilic, and radical attacks, the calculation of the HOMO-LUMO boundary orbital was carried out, and the corresponding energies were obtained. Local reactivity was studied by using local selectivity descriptors such as Fukui indices.

Graphical Abstract

Keywords

Graphene properties Biomolecules Interaction graphene-biomolecule Density functional theory Reactivity Biomedical relevance Modeling and simulation 

Notes

Acknowledgments

The authors are grateful for the support received from the National System of Researchers, SNI, of the National Council of Science and Technology of Mexico, CONACYT, the Universidad Autónoma de la Ciudad de México, UACM, and Instituto Politécnico Nacional, IPN, of Mexico.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52):19912–19916.  https://doi.org/10.1021/jp040650f CrossRefGoogle Scholar
  2. Burley SK, Petsko GA (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28CrossRefGoogle Scholar
  3. Chen L, Zhang X, Zhou G, Xiang X, Ji X, Zheng Z, He Z, Wang H (2012) Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay. Anal Chem 84:3200–3207CrossRefGoogle Scholar
  4. Chou SS, De M, Luo JY, Rotello VM, Huang JX, Dravid VP (2012) Nanoscale grapheme oxide (nGO) as artificial receptors: implications for biomolecular interactions and sensing. J Am Chem Soc 134:16725–16733.  https://doi.org/10.1021/ja306767y CrossRefGoogle Scholar
  5. Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of grapheme and grapheme oxide. Acc Chem Res 46:2211–2224CrossRefGoogle Scholar
  6. Cramer CJ (2002) Essentials of computational chemistry: theories and models, University of Minessota, Minneapolis, John Wiley and Sons, LTD. ISBN: 0 471-48551 9Google Scholar
  7. Farver J, Merz KM (2010) The Utility of the HSAB Principle via the Fukui function in biological systems. J Chem Theory Comput 6:548–559.  https://doi.org/10.1021/ct9005085 CrossRefGoogle Scholar
  8. Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of grapheme and grapheme oxide. Adv Mater 25:168–186.  https://doi.org/10.1002/adma.201203229 CrossRefGoogle Scholar
  9. Flocco MM, Mowbray SL (1994) Planar stacking interactions of arginine and aromatic side-chains in proteins. J Mol Biol 235:709–717.  https://doi.org/10.1006/jmbi.1994.1022 CrossRefGoogle Scholar
  10. Foresman, J.B. y Frisch, Æ. (1996). Exploring chemistry with electronic structure methods. Ed. Gaussian Inc., 2a, Pittsburgh, EUA.Google Scholar
  11. Frost R, Johnsson GE, Chakarov D, Svedhem S, Kasemo B (2012) Graphene oxide and lipid membranes: interactions and nanocomposite structure. Nano Lett 12:3356–3362.  https://doi.org/10.1021/nl203107k CrossRefGoogle Scholar
  12. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of grapheme: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214.  https://doi.org/10.1021/cr3000412 CrossRefGoogle Scholar
  13. Girit ÇÖ, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A (2009) Graphene at the edge: stability and dynamics. Science 323:1705–1708.  https://doi.org/10.1126/science.1166999 CrossRefGoogle Scholar
  14. Gong X, Liu G, Li Y, Yu DYW, Teoh WY (2016) Functionalized-graphene composites: fabrication and applications in sustainable energy and environment. Chem Mater 28:8082–8118CrossRefGoogle Scholar
  15. Hirshfeld FL (1997) Bonded-atom fragments for describing molecular charge densities. Theoretica Chimica Acta 44:129–138CrossRefGoogle Scholar
  16. Huang PY, Ruiz-Vargas CS, Arend Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392CrossRefGoogle Scholar
  17. Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H (2013) Solution-phase epitaxial growth of noble metal nanostructures on dispersible single –layer molybdenum disulfide nanosheets. Nat Commun 4:1444.  https://doi.org/10.1038/ncomms2472 CrossRefGoogle Scholar
  18. Huang X, Tan C, Yin Z, Zhang H (2014) 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26:2185–2204.  https://doi.org/10.1002/adma.201304964 CrossRefGoogle Scholar
  19. Hughes ZE, Tomasio SM, Walsh TR (2014) Efficient simulation of the aqueous bio-interface of graphic nanostructures with a polarisable model. Nanoscale 6:5438–5448.  https://doi.org/10.1039/c4nr00468j CrossRefGoogle Scholar
  20. Kadish KM, Ruoff RS (2000) Fullerenes: chemistry physics and technology. John Wiley and Sons. Wiley-Interscience, New York ISBN-13:978-0471290896, ISBN-10:0471290890Google Scholar
  21. Kang X, Wang J, Wu H, Akasay IA, Liu J, Lin Y (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25:901–905CrossRefGoogle Scholar
  22. Khatayevich D, Page T, Gresswell C, Hayamizu Y, Grady W, Sarikaya M (2014) Selective detection of target proteins by peptide-enable grapheme biosensor. Small 10:1505–1513.  https://doi.org/10.1002/smll.201302188 CrossRefGoogle Scholar
  23. Lei H, Zhou X, Wu H, Song Y, Hu J, Guo S, Zhang Y (2014) Morphology change and detachment of lipid bilayers from the mica substrate driven by graphene oxide sheets. Langmuir 30:4678–4683.  https://doi.org/10.1021/la500788z CrossRefGoogle Scholar
  24. Li M, Yang X, Ren J, Qu K, Qu X (2012) Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater 24:1722–1728.  https://doi.org/10.1002/adma.201104864 CrossRefGoogle Scholar
  25. López-Chávez E, Muñoz-Vega R, Castillo-Alvarado F, Ortíz-López J, Peña Castañeda YA, Martínez-Magadán JM (2012) Electrochemistry, reactivity and selectivity of toroidal c120 nanostructure: a density functional theory study. J Comput Theor Nanos 9:1–9CrossRefGoogle Scholar
  26. Lusk MT, Hamm N (2007) Toroidal carbon nanotubes with encapsulated atomic metal loops. Phys Rev B 76:125422CrossRefGoogle Scholar
  27. Manochehry S, Liu M, Chang D, Li Y (2017) Optical biosensors utilizing graphene and functional DNA molecules. J Mater Res 32(15):2973–2983.  https://doi.org/10.1557/jmr.2017.103 CrossRefGoogle Scholar
  28. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRefGoogle Scholar
  29. Mustata GM, Kim YH, Zhang J, DeGrado WF, Grigoryan G, Wanunu M (2016a) Graphene symmetry amplified by designed peptide self-assembly. Biophys J 110:2507–2516.  https://doi.org/10.1016/j.bpj.2016.04.037 CrossRefGoogle Scholar
  30. Mustata GM, Kim YH, Zhang J, DeGrado WF, Grigoryan G, Wanunu M (2016b) Graphene symmetry amplified by designed peptide self-assembly. Biophys J. 110(11):2507–2516.  https://doi.org/10.1016/j.bpj.2016.04.037 CrossRefGoogle Scholar
  31. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669.  https://doi.org/10.1126/science.1102896 CrossRefGoogle Scholar
  32. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E (2006) Controlling the electronic structure of bilayer graphene. Science 313:951CrossRefGoogle Scholar
  33. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York, Oxford. Int. Quantum Chem. 47(1):101. doi:  https://doi.org/10.1002/qua.560470107, ISBN-13: 978-0195092769, ISBN-10: 0195092767.CrossRefGoogle Scholar
  34. Pattnaik S, Swain K, Lin Z (2016) Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J Mater. Chem. B 48:7813–7831.  https://doi.org/10.1039/C6TB02086K CrossRefGoogle Scholar
  35. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687.  https://doi.org/10.1103/PhysRevB.46.6671 CrossRefGoogle Scholar
  36. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys. Rev. Lett. 78:1396.  https://doi.org/10.1103/PhysRevLett.78.1396 CrossRefGoogle Scholar
  37. Ren M, Zhao L, Lv X, Wang D (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11:578–590.  https://doi.org/10.1080/17435390.2017.1329954 CrossRefGoogle Scholar
  38. Russell SR, Claridge SA (2016) Peptide interface with grapheme: an emerging intersection of analytical chemistry, theory, and materials. Anal Bioanal Chem 408:2649–2658CrossRefGoogle Scholar
  39. Saito S, Oshiyama A (1991) Cohesive mechanism and energy bands of solid C60. Phys Rev Lett 66:2637CrossRefGoogle Scholar
  40. Sebetci A, Richter M (2010) Gd@C82: origin of the antiferromagnetic coupling between endohedral gd and the free spin on the carbon cage. J. Phys. Chem. C 114:15–19CrossRefGoogle Scholar
  41. Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay I, Lin Y (2010) Nitrogen-doped grapheme and its electrochemical applications. J Mater Chem 20:7491–7496.  https://doi.org/10.1039/c0jm00782j CrossRefGoogle Scholar
  42. Sudibya HG, He Q, Zhang H, Chen P (2011) Electrical detection of metal ions using field transistors based on micropatterned reduced graphene oxide films. ACS Nano 5:1990–1994.  https://doi.org/10.1021/nn103043v CrossRefGoogle Scholar
  43. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212.  https://doi.org/10.1016/j.tibtech.2011.01.008 CrossRefGoogle Scholar
  44. Wu P, Qian Y, Du P, Zhang H, Cai C (2012) Facile synthesis of nitrogen-doped grapheme for measuring the releasing process of hydrogen peroxide from living cells. J Mater Chem 22:6402–6412CrossRefGoogle Scholar
  45. Xu JL, Dai RX, Xin Y, Sun YL, Li X, Yu YX, Xiang L, Xie D, Wang SD, Ren TL (2017) Efficient and reversible electron doping of semiconductor-enriched single-walled carbon nanotubes by using decamethylcobaltocene. Sci Rep 7:6751CrossRefGoogle Scholar
  46. Yang Y, Asiri AM, Tang Z, Du D, Lin Y (2013a) Graphene based materials for biomedical applications. Mater. Today 16:365–373.  https://doi.org/10.1016/j.mattod.2013.09.004 CrossRefGoogle Scholar
  47. Yang K, Feng L, Shi X, Liu Z (2013b) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547.  https://doi.org/10.1039/c2cs35342c CrossRefGoogle Scholar
  48. Yin PT, Shah S, Chhowalla M, Lee KB (2015) Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531.  https://doi.org/10.1021/cr500537t CrossRefGoogle Scholar
  49. Zhou Z, Parr RG (1990) Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 112:5720–5724.  https://doi.org/10.1021/ja00171a007 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Universidad Autonoma de la Ciudad de MexicoMexico CityMexico
  2. 2.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, CICATA-IPNMexico CityMexico
  3. 3.Escuela Superior de Física y Matemáticas del Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations