Review of V2O5-based nanomaterials as electrode for supercapacitor

  • Dandan Chen
  • Jiangfeng LiEmail author
  • Qingsheng Wu


Supercapacitor has recently received more and more extensive attention of researchers worldwide. V2O5 as an ideal electrode for supercapacitor has attracted great attention due to its mixed oxidation states, natural abundance, high capacitance, and great energy density. In this review, the effect of the morphology, structure, and composition of V2O5-based nanomaterials as electrode has been discussed. Besides, the symmetric and asymmetric supercapacitors using V2O5-based nanocomposites as electrode show high-energy density and wide voltage window, which can compete with batteries.


V2O5 Nanomaterials Heterostructures Supercapacitor Energy storage 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aniu Q, Kai Z, Myung Sik S, Woo Won C, Bit Na C, Chan-Hwa C (2015) Surfactant effects on the morphology and pseudocapacitive behavior of V2O5·H2O. Chemsuschem 8(14):2399–2406Google Scholar
  2. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614Google Scholar
  3. Bai MH, Liu TY, Luan F, Li Y, Liu XX (2014) Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. J Mater Chem A 2(28):10882–10888Google Scholar
  4. Balamuralitharan B, Cho I, Bak JS, Kim HJ (2018) V2O5 nanorod electrode material for enhanced electrochemical properties by facile hydrothermal method for supercapacitor applications. New J Chem 14(42):11862–11868Google Scholar
  5. Borenstein A, Hanna O, Ran A, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5(25):12653–12672Google Scholar
  6. Brousse T, Bélanger D, Chiba K, Egashira M, Favier F, Long J, Miller JR, Morita M, Naoi K, Simon P (2017) Materials for electrochemical capacitors. In: Breitkopf C & Swider-Lyons K (eds) Springer handbook of electrochemical energy. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 495–561Google Scholar
  7. Cao L, Zhu J, Li Y, Xiao P, Zhang Y, Zhang S, Yang S (2014) Ultrathin single-crystalline vanadium pentoxide nanoribbon constructed 3D networks for superior energy storage. J Mater Chem A 2(32):13136–13142Google Scholar
  8. Chen W, Zhou C, Mai L, Liu Y, Qi Y, Dai Y (2008) Field emission from V2O5·nH2O nanorod arrays. J Phys Chem C 112(7):2262–2265Google Scholar
  9. Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23(6):791–795Google Scholar
  10. Chen C, Ning Z, Liu X, He Y, Hao W, Bo L, Ma R, Pan A, Roy VAL (2016) Polypyrrole modified NH4NiPO4•H2O nanoplate arrays on Ni foam for efficient electrode in electrochemical capacitors. ACS Sustain Chem Eng 4(10):5578–5584Google Scholar
  11. Chotia, I., & Chowdhury, S. 2016. Battery storage and hybrid battery supercapacitor storage systems: a comparative critical review. Paper presented at the Innovative Smart Grid Technologies-asiaGoogle Scholar
  12. Choudhury A, Bonso JS, Wunch M, Yang KS, Ferraris JP, Yang DJ (2015) In-situ synthesis of vanadium pentoxide nanofibre/exfoliated graphene nanohybrid and its supercapacitor applications. J Power Sources 287:283–290Google Scholar
  13. Choudhury A, Kim JH, Yang KS, Yang DJ (2016) Facile synthesis of self-standing binder-free vanadium pentoxide-carbon nanofiber composites for high-performance supercapacitors. Electrochim Acta 213:S401125975Google Scholar
  14. Delmas C, Cognac-Auradou H, Cocciantelli JM, Ménétrier M, Doumerc JP (1994) The Li x V 2 O 5 system: an overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 69(3–4):257–264Google Scholar
  15. Dongliang C, Xinhui X, Jilei L, Zhanxi F, Chin Fan N, Jianyi L, Hua Z, Ze Xiang S, Jin FH (2014) A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv Mater 26(33):5794–5800Google Scholar
  16. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790Google Scholar
  17. Ellis BL, Philippe K, Thierry D (2014) Three-dimensional self-supported metal oxides for advanced energy storage. Adv Mater 45(30):3368–3397Google Scholar
  18. Foo CY, Sumboja A, Tan DJH, Wang J, Lee PS (2015a) Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv Energy Mater 4(12):3412–3420Google Scholar
  19. Foo CY, Sumboja A, Tan DJH, Wang J, Lee PS (2015b) Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv Energy Mater 4(12):3412–3420Google Scholar
  20. Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6(12):2690–2695Google Scholar
  21. Huq MM, Hsieh CT, Ho CY (2016) Preparation of carbon nanotube-activated carbon hybrid electrodes by electrophoretic deposition for supercapacitor applications. Diam Relat Mater 62:58–64Google Scholar
  22. Jayalakshmi M, Rao MM, Venugopal N, Kim KB (2007) Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT electrodes for supercapacitor applications. J Power Sources 166(2):578–583Google Scholar
  23. Jeyalakshmi K, Vijayakumar S, Purushothaman KK, Muralidharan G (2013) Nanostructured nickel doped β-V2O5 thin films for supercapacitor applications. Mater Res Bull 48(7):2578–2582Google Scholar
  24. Jie X, Sun H, Li Z, Shan L, Zhang X, Jiang S, Zhu Q, Zakharova GS (2014) Synthesis and electrochemical properties of graphene/V2O5 xerogels nanocomposites as supercapacitor electrodes. Solid State Ionics 262(9):234–237Google Scholar
  25. Junyi J, Li Li Z, Hengxing J, Yang L, Xin Z, Xin B, Xiaobin F, Fengbao Z, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7(7):6237Google Scholar
  26. Kim BH, Chang HK, Yang KS, Rahy A, Yang DJ (2012a) Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes. Electrochim Acta 83(12):335–340Google Scholar
  27. Kim BH, Chang HK, Yang KS, Rahy A, Yang DJ (2012b) Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes. Electrochim Acta 83(12):335–340Google Scholar
  28. Lee M, Balasingam SK, Jeong HY, Hong WG, Lee HB, Kim BH, Jun Y (2015) One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci Rep 5:8151Google Scholar
  29. Li M, Kong F, Wang H, Li G (2011) Synthesis of vanadium pentoxide (V2O5) ultralong nanobelts via an oriented attachment growth mechanism. CrystEngComm 13(17):5317–5320Google Scholar
  30. Liang K, Tang X, Hu W, Yang Y (2016) Ultrafine V2O5 nanowires in 3D current collector for high-performance supercapacitor. Chemelectrochem 3(5):704–708Google Scholar
  31. Liang B, Chen Y, He J, Chen C, Liu W, He Y, Liu X, Zhang N, Val R (2018) Controllable fabrication and tuned electrochemical performance of potassium Co-Ni phosphate microplates as electrodes in supercapacitors. ACS Appl Mater Interfaces 10(4):3506–3514Google Scholar
  32. Lin Z, Yan X, Lang J, Wang R, Kong LB (2015) Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods. J Power Sources 279:358–364Google Scholar
  33. Liu W, Liu N, Shi Y, Ying C, Yang C, Tao J, Wang S, Wang Y, Su J, Li L (2015a) Wire-shaped flexible asymmetric supercapacitor based on carbon fiber coated with metal oxide & polymer. J Mater Chem A 3(25):13461–13467Google Scholar
  34. Liu W, Liu N, Shi Y, Ying C, Yang C, Tao J, Wang S, Wang Y, Su J, Li L (2015b) A wire-shaped flexible asymmetric supercapacitor based on carbon fiber coated with a metal oxide and a polymer. J Mater Chem A 3(25):13461–13467Google Scholar
  35. Min Z, Yin H, Yu KE (2012) Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chem Eng J 188(1):64–70Google Scholar
  36. Muhr HJ, Krumeich F, Schoenholzer UP, Bieri F, Niederberger M, Gauckler LJ, Nesper R (2010) ChemInform abstract: vanadium oxide nanotubes — a new flexible vanadate nanophase. Cheminform 31(16) no-noGoogle Scholar
  37. Nagaraju DH, Wang Q, Beaujuge P, Alshareef HN (2014) Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors. J Mater Chem A 2(40):17146–17152Google Scholar
  38. Ning Z, Chen C, Chen Y, Chen G, Liao C, Bo L, Zhang J, An L, Yang B, Zheng Z (2018) Ni2P2O7 nanoarrays with decorated C3N4 nanosheets as efficient electrode for supercapacitors. ACS Appl Energy Mater 1(5):2016–2023Google Scholar
  39. Pandit B, Dubal DP, G贸mez-Romero P, Kale BB, Sankapal BR (2017) V2O5 encapsulated MWCNTs in 2D surface architecture: complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci Rep 7:43430Google Scholar
  40. PERERA SD, RUDOLPH M, MARIANO RG, NIJEM N, FERRARIS JP (2013) Manganese oxide nanorod-graphene/vanadium oxide nanowire-graphene binder-free paper electrodes for metal oxide hybrid supercapacitors. Nano Energy 2(5):966–975Google Scholar
  41. Pinna N, Willinger M, Weiss K, Urban J, Schlögl R (2003) Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Lett 3:1131–1134Google Scholar
  42. Pradhan M, Rudra S, Nayak AK, Chakraborty R, Maji P (2018) Synthesis of Au-V2O5 composite nanowire through shape transformation of vanadium(III) metal complex for high-performance solid-state supercapacitor. Inorg Chem Front:10–1039Google Scholar
  43. Purushothaman, K. K., Saravanakumar, B., Muralidharan, G., & Dhanashankar, M. 2017. Design of additive free 3D floral shaped V2O5@ Ni foam for high performance supercapacitors. Mater Technol. Google Scholar
  44. Qian T, Xu N, Zhou J, Yang T, Liu X, Shen X, Liang J, Yan C (2014) Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors. J Mater Chem A 3(2):488–493Google Scholar
  45. Qu QT, Shi Y, Li LL, Guo WL, Wu YP, Zhang HP, Guan SY, Holze R (2009) V2O5·0.6 H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochem Commun 11(6):1325–1328Google Scholar
  46. Qu Q, Zhu Y, Gao X, Wu Y (2012) Core–shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv Energy Mater 2(8):950–955Google Scholar
  47. Reddy RN, Reddy RG (2003) Sol–gel MnO2 as an electrode material for electrochemical capacitors. J Power Sources 124(1):330–337Google Scholar
  48. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4(9):4484–4490Google Scholar
  49. Saravanakumar B, Purushothaman KK, Muralidharan G (2014) V2O5/functionalized MWCNT hybrid nanocomposite: the fabrication and its enhanced supercapacitive performance. RSC Adv 4(70):37437–37445Google Scholar
  50. Saravanakumar B, Purushothaman KK, Muralidharan G (2015) High performance supercapacitor based on carbon coated V2O5 nanorods. J Electroanal Chem 758:111–116Google Scholar
  51. Saravanakumar B, Purushothaman KK, Muralidharan G (2016) Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors. Mater Chem Phys 170:266–275Google Scholar
  52. Saravanakumar B, Maruthamuthu S, Umadevi V, Saravanan V (2018) CTAB-aided synthesis of stacked V2O5 nanosheets: morphology, electrochemical features and asymmetric device performance. Int J Nanosci 17(01n02):1760009Google Scholar
  53. Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukla AK (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133(40):16291–16299Google Scholar
  54. Shaikh JS, Pawar RC, Mali SS, Moholkar AV, Kim JH, Patil PS (2012) Effect of annealing on the supercapacitor performance of CuO-PAA/CNT films. J Solid State Electrochem 16(1):25–33Google Scholar
  55. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211Google Scholar
  56. Thangappan R, Kalaiselvam S, Elayaperumal A, Jayavel R (2014) Synthesis of graphene oxide/vanadium pentoxide composite nanofibers by electrospinning for supercapacitor applications. Solid State Ionics 268:321–325Google Scholar
  57. Wang N, Zhang Y, Tao H, Zhao Y, Meng C (2015) Facile hydrothermal synthesis of ultrahigh-aspect-ratio V2O5 nanowires for high-performance supercapacitors. Curr Appl Phys 15(4):493–498Google Scholar
  58. Wang Q, Zou Y, Xiang C, Chu H, Zhang H, Xu F, Sun L, Tang C (2016) High-performance supercapacitor based on V 2 O 5 /carbon nanotubes-super activated carbon ternary composite. Ceram Int 42(10):12129–12135Google Scholar
  59. Wee G, Soh HZ, Yan LC, Mhaisalkar SG, Srinivasan M (2010) Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J Mater Chem 20(32):6720–6725Google Scholar
  60. Winter M, Brodd RJ (2005) What are batteries, fuel cells, and supercapacitors? ( Chem. Rev. 2003 , 104 , 4245–4269. Published on the Web 09/28/2004.). Chem Rev 105(3):1021Google Scholar
  61. Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM (2012a) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131Google Scholar
  62. Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM (2012b) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131Google Scholar
  63. Xing LL, Zhao G, Huang KJ, Wu X (2018) Ultrathin nanosheets assembling yolk-shelled structure of V2O5 and coralline-shaped carbon as advanced electrodes for high-performance asymmetric supercapacitor. Dalton Trans 47(7):2256–2265Google Scholar
  64. Xiong C, Aliev AE, Gnade B, Jr KJB (2008) Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. ACS Nano 2(2):293–301Google Scholar
  65. Yan J, Qian W, Tong W, Fan Z (2014) Supercapacitors: recent advances in design and fabrication of electrochemical supercapacitors with high energy densities (Adv. Energy Mater. 4/2014). Adv Energy Mater 4(4):1300816–130085Google Scholar
  66. Yang Y, Doohun K, Min Y, Patrik S (2011) Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications. Chem Commun 47(27):7746–7748Google Scholar
  67. Ye G, Gong Y, Keyshar K, Husain EAM, Brunetto G, Yang S, Vajtai R, Ajayan PM (2015) 3D reduced graphene oxide coated V2O5 nanoribbon scaffolds for high-capacity supercapacitor electrodes. Part Part Syst Charact 32(8):817–821Google Scholar
  68. Yu D, Chen C, Xie S, Liu Y, Park K, Zhou X, Zhang Q, Li J, Cao G (2011) Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ Sci 4(3):858–861Google Scholar
  69. Yu G, Xing X, Pan L, Bao Z, Yi C, Nanoen J (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2):213–234Google Scholar
  70. Yu Z, Tetard L, Lei Z, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730Google Scholar
  71. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531Google Scholar
  72. Zhang H, Xie A, Wang C, Wang H, Shen Y, Tian X (2014) Bifunctional reduced graphene oxide/V2O5 composite hydrogel: fabrication, high performance as electromagnetic wave absorbent and supercapacitor. Chemphyschem 15(2):366–373Google Scholar
  73. Zhang Y, Zheng J, Wang Q, Tao H, Meng C (2016a) Hydrothermal synthesis of vanadium dioxides/carbon composites and their transformation to surface-uneven V2O5 nanoparticles with high electrochemical properties. RSC Adv 6(96)Google Scholar
  74. Zhang Y, Zheng J, Zhao Y, Tao H, Gao Z, Meng C (2016b) Fabrication of V 2 O 5 with various morphologies for high-performance electrochemical capacitor. Appl Surf Sci 377:385–393Google Scholar
  75. Zhang Y, Jing X, Wang Q, Zheng J, Jiang H, Meng C (2017a) Three-dimensional porous V2O5 hierarchical spheres as a battery-type electrode for a hybrid supercapacitor with excellent charge storage performance. Dalton Trans 46:15048–15058Google Scholar
  76. Zhang Y, Zheng J, Wang Q, Zhang S, Tao H, Meng C (2017b) One-step hydrothermal preparation of (NH4)2V3O8/carbon composites and conversion to porous V2O5 nanoparticles as supercapacitor electrode with excellent pseudocapacitive capability. Appl Surf Sci 423:728–742Google Scholar
  77. Zhao X, Zhang L, Murali S, Stoller MD, Zhang Q, Zhu Y, Ruoff RS (2012) Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6(6):5404–5412Google Scholar
  78. Zheng S, Wu ZS, Wang S, Han X, Feng Z, Sun C, Bao X, Cheng HM (2017) Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Mater 6:70–97Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryLishui UniversityLishuiPeople’s Republic of China
  2. 2.School of Chemical Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations