Advertisement

Onion-like carbon-modified TiO2 coating by suspension plasma spray with enhanced photocatalytic performances

  • Yaoyao Fu
  • Yi Liu
  • Hua LiEmail author
Research Paper
  • 25 Downloads

Abstract

Onion-like carbon (OLC), a novel carbonaceous nanomaterial, has already attracted widespread concern due to its exceptional physicochemical properties. In this work, OLC nanoparticles (5–10 nm in diameter) were used as additives to fabricate nanotitania (TiO2) coatings by suspension plasma spray (SPS) for photocatalytic degrading methylene blue. The starting microstructure and chemistry of both OLC and TiO2 nanoparticles were retained after deposition process, and homogeneous dispersion of OLC in the coating was detected, which indicates SPS is an alternative and efficient technique to fabricate semiconductor-carbonaceous nanomaterials coatings. The new TiO2-OLC composite shows typical mesoporous structure. And aligned interfacial bond of OLC spheres with the (101) plane of anatase crystals was revealed. TiO2-OLC shows enhanced activity of degrading methylene blue under both UV and visible light irradiation than pure TiO2 coating. We have elucidated the enhancement mechanism from three aspects, namely, reduction of the bandgap, minimization of photo-induced-carriers recombination, and promotion of adsorption capacity for methylene blue.

Keywords

Titania coating Onion-like carbon Nanoparticles Suspension plasma spray Photocatalytic performances Nanocomposites 

Notes

Funding information

This work was supported by Key Research and Development Program of Zhejiang Province (grant # 2017C01003), National Natural Science Foundation of China (grant # 41476064 and 31500772), and Zhejiang Provincial Natural Science Foundation of China (grant # LY18C100003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290.  https://doi.org/10.1016/j.jhazmat.2011.10.041 CrossRefGoogle Scholar
  2. Bannier E, Darut G, Sánchez E, Denoirjean A, Bordes MC, Salvador MD, Rayón E, Ageorges H (2011) Microstructure and photocatalytic activity of suspension plasma sprayed TiO2 coatings on steel and glass substrates. Surf Coat Technol 206:378–386.  https://doi.org/10.1016/j.surfcoat.2011.07.039 CrossRefGoogle Scholar
  3. Berman D, Narayanan B, Cherukara MJ, Sankaranarayanan S, Erdemir A, Zinovev A, Sumant AV (2018) Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity. Nat Commun 9:1164.  https://doi.org/10.1038/s41467-018-03549-6 CrossRefGoogle Scholar
  4. Boningari T, Inturi SNR, Suidan M, Smirniotis PG (2018) Novel one-step synthesis of nitrogen-doped TiO2 by flame aerosol technique for visible-light photocatalysis: effect of synthesis parameters and secondary nitrogen (N) source. Chem Eng J 350:324–334.  https://doi.org/10.1016/j.cej.2018.05.122 CrossRefGoogle Scholar
  5. Chen Q, Tong RF, Chen XJ, Xue YK, Xie ZX, Kuang Q, Zheng LS (2018) Ultrafine ZnO quantum dot-modified TiO2 composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution. Catal Sci Technol 8:1296–1303.  https://doi.org/10.1039/c7cy02310c CrossRefGoogle Scholar
  6. Correia FC, Calheiros M, Marques J, Ribeiro JM, Tavares CJ (2018) Synthesis of Bi2O3/TiO2 nanostructured films for photocatalytic applications. Ceram Int 44:22638–22644.  https://doi.org/10.1016/j.ceramint.2018.09.040 CrossRefGoogle Scholar
  7. Fan LL, Luo CN, Li XJ, Lu FG, Qiu HM, Sun M (2012) Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J Hazard Mater 215:272–279.  https://doi.org/10.1016/j.jhazmat.2012.02.068 CrossRefGoogle Scholar
  8. Feng F, Yang WY, Gao S, Sun CX, Li Q (2018) Postillumination activity in a single-phase photocatalyst of Mo-doped TiO2 nanotube array from its photocatalytic “memory”. ACS Sustain Chem Eng 6:6166–6174.  https://doi.org/10.1021/acssuschemeng.7b04845 CrossRefGoogle Scholar
  9. Fitri MA, Ota M, Hirota Y, Uchida Y, Hara K, Ino D, Nishiyama N (2017) Fabrication of TiO2-graphene photocatalyst by direct chemical vapor deposition and its anti-fouling property. Mater Chem Phys 198:42–48.  https://doi.org/10.1016/j.matchemphys.2017.05.053 CrossRefGoogle Scholar
  10. Ghosh M, Sonkar SK, Saxena M, Sarkar S (2011) Carbon nano-onions for imaging the life cycle of drosophila melanogaster. Small. 7:3170–3177.  https://doi.org/10.1002/smll.201101158 CrossRefGoogle Scholar
  11. Hao RR, Wang GH, Jiang CJ, Tang H, Xu QC (2017) In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl Surf Sci 411:400–410.  https://doi.org/10.1016/j.apsusc.2017.03.197 CrossRefGoogle Scholar
  12. Kho YK, Iwase A, Teoh WY, Maedler L, Kudo A, Amal R (2010) Photocatalytic H2 evolution over TiO2 nanoparticles: the synergistic effect of anatase and rutile. J Phys Chem C 114:2821–2829.  https://doi.org/10.1021/jp910810r CrossRefGoogle Scholar
  13. Ko YJ, Choi K, Lee S, Cho JM, Choi HJ, Hong SW, Choi JW, Mizuseki H, Lee WS (2016) Chromate adsorption mechanism on nanodiamond-derived onion-like carbon. J Hazard Mater 320:368–375.  https://doi.org/10.1016/j.jhazmat.2016.08.041 CrossRefGoogle Scholar
  14. Kuznetsov VL, Chuvilin AL, Butenko YV, Malkov IY, Titov VM (1994) Onion-like carbon from ultra-disperse diamond. Chem Phys Lett 222:343–348.  https://doi.org/10.1016/0009-2614(94)87072-1 CrossRefGoogle Scholar
  15. Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon. 49:741–772.  https://doi.org/10.1016/j.carbon.2010.10.010 CrossRefGoogle Scholar
  16. Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24:1084–1088.  https://doi.org/10.1002/adma.201104110 CrossRefGoogle Scholar
  17. Li X, Yu JG, Wageh S, Al-Ghamdi AA, Xie J (2016) Graphene in photocatalysis: a review. Small. 12:6640–6696.  https://doi.org/10.1002/smll.201600382 CrossRefGoogle Scholar
  18. Li X, Yu J, Li G, Liu H, Wang A, Yang L, Zhou W, Chu B, Liu S (2018) TiO2 nanodots anchored on nitrogen-doped carbon nanotubes encapsulated cobalt nanoparticles as photocatalysts with photo-enhanced catalytic activity towards the pollutant removal. J Colloid Interface Sci 526:158–166.  https://doi.org/10.1016/j.jcis.2018.04.102 CrossRefGoogle Scholar
  19. Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng H-M (2014) Titanium dioxide crystals with tailored facets. Chem Rev 114:9559–9612.  https://doi.org/10.1021/cr400621z CrossRefGoogle Scholar
  20. Liu H, Chen Z, Zhang L, Zhu D, Zhang Q, Luo Y, Shao X (2018) Graphene grown on anatase-TiO2 nanosheets: enhanced photocatalytic activity on basis of a well-controlled interface. J Phys Chem C 122:6388–6396.  https://doi.org/10.1021/acs.jpcc.7b12305 CrossRefGoogle Scholar
  21. Nalid NR, Majid A, Tahir MB, Niaz NA, Khalid S (2017) Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram Int 43:14552–14571.  https://doi.org/10.1016/j.ceramint.2017.08.143 CrossRefGoogle Scholar
  22. Pawlowski L (2009) Suspension and solution thermal spray coatings. Surf Coat Technol 203:2807–2829.  https://doi.org/10.1016/j.surfcoat.2009.03.005 CrossRefGoogle Scholar
  23. Rajagopal R, Ryu K-S (2018) Synthesis of rGO-doped Nb4O5-TiO2 nanorods for photocatalytic and electrochemical energy storage applications. Appl Catal B 236:125–139.  https://doi.org/10.1016/j.apcatb.2018.03.112 CrossRefGoogle Scholar
  24. Re M, Liu H, Qu J, Zhang Y, Ma Y, Yuan X (2018) The different paths and potential risks of photo(-electro)-catalytic degradation for rhodamine B in water by graphene/TiO2 membrane. Environ Sci Pollut Res 25:13988–13999.  https://doi.org/10.1007/s11356-018-1611-4 CrossRefGoogle Scholar
  25. Ren K, Liu Y, He X, Li H (2015) Suspension plasma spray fabrication of nanocrystalline titania hollow microspheres for photocatalytic applications. J Therm Spray Technol 24:1213–1220.  https://doi.org/10.1007/s11666-015-0296-1 CrossRefGoogle Scholar
  26. Robinson BW, Tighe CJ, Gruar RI, Mills A, Parkin IP, Tabecki AK, de Villiers Lovelock HL, Darr JA (2015) Suspension plasma sprayed coatings using dilute hydrothermally produced titania feedstocks for photocatalytic applications. J Mater Chem A 3:12680–12689.  https://doi.org/10.1039/c4ta05397d CrossRefGoogle Scholar
  27. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008.  https://doi.org/10.1016/j.watres.2004.04.046 CrossRefGoogle Scholar
  28. Sakulthaew C, Comfort SD, Chokejaroenrat C, Li X, Harris CE (2015) Removing PAHs from urban runoff water by combining ozonation and carbon nano-onions. Chemosphere. 141:265–273.  https://doi.org/10.1016/j.chemosphere.2015.08.002 CrossRefGoogle Scholar
  29. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986.  https://doi.org/10.1021/cr5001892 CrossRefGoogle Scholar
  30. Seymour MB, Su C, Gao Y, Lu Y, Li Y (2012) Characterization of carbon nano-onions for heavy metal ion remediation. J Nanopart Res 14.  https://doi.org/10.1007/s11051-012-1087-y
  31. Shaban M, Ashraf AM, Abukhadra MR (2018) TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity: fabrication, characterization, and application. Sci Rep 8:781.  https://doi.org/10.1038/s41598-018-19172-w CrossRefGoogle Scholar
  32. Toma FL, Bertrand G, Begin S, Meunier C, Barres O, Klein D, Coddet C (2006a) Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying. Appl Catal B 68:74–84.  https://doi.org/10.1016/j.apcatb.2006.07.009 CrossRefGoogle Scholar
  33. Toma FL, Bertrand G, Chwa SO, Meunier C, Klein D, Coddet C (2006b) Comparative study on the photocatalytic decomposition of nitrogen oxides using TiO2 coatings prepared by conventional plasma spraying and suspension plasma spraying. Surf Coat Technol 200:5855–5862.  https://doi.org/10.1016/j.surfcoat.2005.08.148 CrossRefGoogle Scholar
  34. Toma FL, Bertrand G, Klein D, Coddet C, Meunier C (2006c) Nanostructured photocatalytic titania coatings formed by suspension plasma spraying. J Therm Spray Technol 15:587–592.  https://doi.org/10.1361/105996306x147234 CrossRefGoogle Scholar
  35. Tomaszek R, Pawlowski L, Gengembre L, Laureyns J, Znamirowski Z, Zdanowski J (2006) Microstructural characterization of plasma sprayed TiO2 functional coating with gradient of crystal grain size. Surf Coat Technol 201:45–56.  https://doi.org/10.1016/j.surfcoat.2005.10.033 CrossRefGoogle Scholar
  36. Ton NNT, Dao ATN, Kato K, Ikenaga T, Trinh DX, Taniike T (2018) One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon. 133:109–117.  https://doi.org/10.1016/j.carbon.2018.03.025 CrossRefGoogle Scholar
  37. Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature. 359:707–709.  https://doi.org/10.1038/359707a0 CrossRefGoogle Scholar
  38. Wang Z, Lang XJ (2018) Visible light photocatalysis of dye-sensitized TiO2: the selective aerobic oxidation of amines to imines. Appl Catal B 224:404–409.  https://doi.org/10.1016/j.apcatb.2017.10.002 CrossRefGoogle Scholar
  39. Wang R, Lu KQ, Tang ZR, Xu YJ (2017) Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A 5:3717–3734.  https://doi.org/10.1039/c6ta08660h CrossRefGoogle Scholar
  40. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239.  https://doi.org/10.1002/adma.200802738 CrossRefGoogle Scholar
  41. Xu J, Chen M, Fu D (2011) Study on highly visible light active Bi-doped TiO2 composite hollow sphere. Appl Surf Sci 257:7381–7386.  https://doi.org/10.1016/j.apsusc.2011.02.030 CrossRefGoogle Scholar
  42. Zeiger M, Jackel N, Asian M, Weingarth D, Presser V (2015) Understanding structure and porosity of nanodiamond-derived carbon onions. Carbon. 84:584–598.  https://doi.org/10.1016/j.carbon.2014.12.050 CrossRefGoogle Scholar
  43. Zeiger M, Jackel N, Mochalin VN, Presser V (2016) Review: carbon onions for electrochemical energy storage. J Mater Chem A 4:3172–3196.  https://doi.org/10.1039/c5ta08295a CrossRefGoogle Scholar
  44. Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010a) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806.  https://doi.org/10.1039/b917240h CrossRefGoogle Scholar
  45. Zhang H, Lv X, Li Y, Wang Y, Li J (2010b) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386.  https://doi.org/10.1021/nn901221k CrossRefGoogle Scholar
  46. Zhang YH, Tang ZR, Fu XZ, Xu YJ (2010c) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4:7303–7314.  https://doi.org/10.1021/nn1024219 CrossRefGoogle Scholar
  47. Zhang JL, Wu YM, Xing MY, Leghari SAK, Sajjad S (2010d) Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ Sci 3:715–726.  https://doi.org/10.1039/b927575d CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations