Toxicity and biodegradation of zinc ferrite nanoparticles in Xenopus laevis

  • M. Rivero
  • M. Marín-Barba
  • L. Gutiérrez
  • E. Lozano-Velasco
  • G. N. Wheeler
  • J. Sánchez-Marcos
  • A. Muñoz-Bonilla
  • C. J. Morris
  • A. RuizEmail author
Research Paper


Zn-doped Fe3O4 magnetic nanoparticles have been proposed as the ideal ferrite for some biomedical applications like magnetic hyperthermia or photothermal therapy because of the possibility to adjust their size and chemical composition in order to design tailored treatments. However, reliable approaches are needed to risk assess Zn ferrite nanoparticles before clinical development. In this work, the in vitro toxicity of the nanoparticles was evaluated in five cellular models (Caco-2, HepG2, MDCK, Calu-3 and Raw 264.7) representing different target organs/systems (gastrointestinal system, liver, kidney, respiratory system and immune system). For the first time, these nanoparticles were evaluated in an in vivo Xenopus laevis model to study whole organism toxicity and their impact on iron and zinc metabolic pathways. Short- and long-term in vivo exposure studies provided insights into the contrasting adverse effects between acute and chronic exposure. Quantitative PCR combined with elemental analysis and AC magnetic susceptibility measurements revealed that at short-term exposure (72 h), the nanoparticles’ absorption process is predominant, with the consequent over-expression of metal transporters and metal response proteins. At long-term exposure (120 h), there is an upregulation of metal accumulation involved genes and the return to basal levels of both iron and zinc transporters, involved in the uptake of metals. This suggests that at this stage, the nanoparticles’ absorption process is residual compared with the following steps in metabolism, distribution and/or excretion processes, indicated by the increase of iron accumulation proteins at both transcriptional and translational level. This testing approach based on a battery of cellular systems and the use of the Xenopus laevis model could be a viable strategy for studying the toxicity, degradability and ultimately the long-term fate of zinc ferrites in the organism.

Graphical abstract

Biodegradation of Zn ferrite NPs have been studied. Quantitative PCR combined with elemental analysis and AC magnetic susceptibility measurements revealed that at short-term exposure (72 h), the nanoparticles’ absorption process is predominant, with the consequent over-expression of metal transporters and metal response proteins. At long-term exposure (120 h), there is an upregulation of metal accumulation involved genes and the return to basal levels of both iron and zinc elements in the body. This suggests that at this stage, the nanoparticles’ absorption process is residual compared with the following steps in metabolism, distribution and/or excretion processes, indicated by the increase of iron accumulation proteins at both transcriptional and translational level.


Zinc ferrite nanoparticles Xenopus laevis Toxicity Biodegradation Metabolism Environmental and health effects 



Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza is acknowledged. The authors also acknowledge the facilities and the scientific and technical assistance, especially that of Bertrand Leze from the SEM service of the University of East Anglia.

Funding information

M. Marín-Barba has been supported by the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Program FP7 under REA grant agreement number 607142 (DevCom). A. Ruiz was supported by FP7-People Framework – Marie Curie Industry and Academia Partnerships & Pathways scheme (DNA-TRAP project, grant agreement no. 612338). L. Gutiérrez recognizes financial support from the Ramón y Cajal subprogram (RYC-2014-15512). E. Lozano-Velasco acknowledges support from Marie Curie fellowship (705089-MIR-CHROM-C).

Compliance with ethical standards

All experiments were performed in compliance with the relevant laws and institutional guidelines at the University of East Anglia. The research has been approved by the local ethical review committee according to UK Home Office regulations.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

11051_2019_4631_MOESM1_ESM.docx (686 kb)
ESM 1 (DOCX 686 kb)


  1. Alhadlaq HAH, Akhtar MJM, Ahamed M (2015) Zinc ferrite nanoparticle-induced cytotoxicity and oxidative stress in different human cells. Cell Biosci BioMed Central 5:55. CrossRefGoogle Scholar
  2. Al-Yousuf K et al (2017) Combining Cytotoxicity Assessment and Xenopus laevis Phenotypic Abnormality assay as a predictor of nanomaterial safety. Curr Protoc Toxicol 73:20(13.1–20):13–33Google Scholar
  3. Arora S, Rajwade J, Paknikar K (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258(2):151–165. CrossRefGoogle Scholar
  4. Bacchetta R, Moschini E, Santo N, Fascio U, del Giacco L, Freddi S, Camatini M, Mantecca P (2014) Evidence and uptake routes for zinc oxide nanoparticles through the gastrointestinal barrier in Xenopus laevis. Nanotoxicology 8(7):728–744. CrossRefGoogle Scholar
  5. Bell SG, Vallee BL (2009) The metallothionein/thionein system: an oxidoreductive metabolic zinc link. ChemBioChem 10(1):55–62. CrossRefGoogle Scholar
  6. Blaise C, Gagné F, Férard JF, Eullaffroy P (2009) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 24(3):296–303. CrossRefGoogle Scholar
  7. Bonaventura P et al (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14(4):277–285. CrossRefGoogle Scholar
  8. Bonfanti P, Moschini E, Saibene M, Bacchetta R, Rettighieri L, Calabri L, Colombo A, Mantecca P (2015) Do nanoparticle physico-chemical properties and developmental exposure window influence nano ZnO embryotoxicity in Xenopus laevis? Int J Environ Res Public HealthISSN 123390:8828–8848. CrossRefGoogle Scholar
  9. Chaurasia N (2017) Nanotechnology and nanomaterials in everyday life. Int J Sci Res 6(4):1560–1562Google Scholar
  10. Cheong S et al (2009) Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. Int J Pharm 8(372(1–2)):169–176CrossRefGoogle Scholar
  11. Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang DL, Crooks DR, Sougrat R, Morgenstern A, Galy B, Hentze MW, Lazaro FJ, Rouault TA, Meyron-Holtz EG (2010) Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 116(9):1574–1584. CrossRefGoogle Scholar
  12. Cousins RRJ, Liuzzi JJP, Lichten LLA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089. CrossRefGoogle Scholar
  13. Dai Q et al (2018) Particle targeting in complex biological media. Adv Healthc Mater 7(1):1700575CrossRefGoogle Scholar
  14. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev. Elsevier B.V. (2):129–137. CrossRefGoogle Scholar
  15. Estelrich J, Sánchez-Martín M, Busquets M (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine 10:1727–1741Google Scholar
  16. Foca-Nici E, Capraru G, Creanga D (2010) Comparative cytogenetic study on the toxicity of magnetite and zinc ferrite nanoparticles in sunflower root cells. AIP Conf Proc 1311:345–350. CrossRefGoogle Scholar
  17. Galdiero E, Falanga A, Siciliano A, Maselli V, Guida M, Carotenuto R, Tussellino M, Lombardi L, Benvenuto G, Galdiero S (2017) Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625. Int J Nanomed Dove Press 12:2717–2731. CrossRefGoogle Scholar
  18. Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, Moore EG, Hainsworth LN, Umbreit JN, Conrad ME, Feng L, Lis A, Roth JA, Singleton S, Garrick LM (2003) DMT1: a mammalian transporter for multiple metals. BioMetals 16(1):41–54. CrossRefGoogle Scholar
  19. Gassié L, Lombard A, Moraldi T, Bibonne A, Leclerc C, Moreau M, Marlier A, Gilbert T (2015) Hspa9 is required for pronephros specification and formation in Xenopus laevis. Dev Dyn 244(12):1538–1549. CrossRefGoogle Scholar
  20. Gonçalves A, Rodrigues M, Gomes M (2017) Tissue-engineered magnetic cell sheet patches for advanced strategies in tendon regeneration. Acta Biomater 63:110–122CrossRefGoogle Scholar
  21. González-Paredes A, Sitia L, Ruyra A, Morris CJ, Wheeler GN, McArthur M, Gasco P (2019) Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. Eur J Pharm Biopharm. Elsevier 134:166–177. CrossRefGoogle Scholar
  22. Gutierrez L et al (2006) Bioinorganic transformations of liver iron deposits observed by tissue magnetic characterisation in a rat model. J Inorg Biochem 100(11):1790–1799. CrossRefGoogle Scholar
  23. Gutierrez L et al (2013) Biophysical and genetic analysis of iron partitioning and ferritin function in Drosophila melanogaster. Metallomics 5(8):997–1005. CrossRefGoogle Scholar
  24. Hagens W et al (2007) What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 49(3):217–229CrossRefGoogle Scholar
  25. Hajba L, Guttman A (2016) The use of magnetic nanoparticles in cancer theranostics: toward handheld diagnostic devices. Biotechnol Adv 34(4):354–361CrossRefGoogle Scholar
  26. Halamoda Kenzaoui B, Chapuis Bernasconi C, Juillerat-Jeanneret L (2013) Stress reaction of kidney epithelial cells to inorganic solid-core nanoparticles. Cell Biol Toxicol 29(1):39–58. CrossRefGoogle Scholar
  27. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta Bioenerg 1275(3):161–203. CrossRefGoogle Scholar
  28. Hasanzadeha M, Shadjou N, de la Guardia M (2015) Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. Trends Anal Chem 72:1–9CrossRefGoogle Scholar
  29. Jain A et al (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 22(58(2)):297–317CrossRefGoogle Scholar
  30. Jiang H, Song N, Xu H, Zhang S, Wang J, Xie J (2010) Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res. Nature Publishing Group 20(3):345–356. CrossRefGoogle Scholar
  31. Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71(17):3281–3295. CrossRefGoogle Scholar
  32. Kanagesan S et al (2016) Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel self-combustion method. Appl Sci 6(9):184. CrossRefGoogle Scholar
  33. Karimi S, Troeung M, Wang R, Draper R, Pantano P (2018) Acute and chronic toxicity of metal oxide nanoparticles in chemical mechanical planarization slurries with Daphnia magna. Environ Sci Nano. Royal Society of Chemistry 5(7):1670–1684. CrossRefGoogle Scholar
  34. Kruszewski M, Iwaneńko T (2003) Labile iron pool correlates with iron content in the nucleus and the formation of oxidative DNA damage in mouse lymphoma L5178Y cell lines. Acta Biochim Pol 50(1):211–215Google Scholar
  35. Lartigue L et al (2013) Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano 28(7(5)):3939–3952CrossRefGoogle Scholar
  36. Laurent S et al (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci. Elsevier B.V. 166(1–2):8–23. CrossRefGoogle Scholar
  37. Lei C, Sun Y, Tsang DCW, Lin D (2018) Environmental transformations and ecological effects of iron-based nanoparticles. Environ Pollut 232:10–30CrossRefGoogle Scholar
  38. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49. CrossRefGoogle Scholar
  39. Liu X, Liu J, Zhang S, Nan Z, Shi Q (2016) Structural, magnetic, and thermodynamic evolutions of Zn-doped Fe3O4 nanoparticles synthesized using a one-step solvothermal method. J Phys Chem C 120(2):1328–1341CrossRefGoogle Scholar
  40. Mamusa M et al (2017) Cationic liposomal vectors incorporating a bolaamphiphile for oligonucleotide antimicrobials. Biochim Biophys Acta Biomembr. Elsevier B.V. 1859(10):1767–1777. CrossRefGoogle Scholar
  41. Marín-Barba M, Gavilán H, Gutiérrez L, Lozano-Velasco E, Rodríguez-Ramiro I, Wheeler GN, Morris CJ, Morales MP, Ruiz A (2018) Unravelling the mechanisms that determine the uptake and metabolism of magnetic single and multicore nanoparticles in a Xenopus laevis model. Nanoscale 10(690–704):690–704. CrossRefGoogle Scholar
  42. Mazuel F, Espinosa A, Luciani N, Reffay M, le Borgne R, Motte L, Desboeufs K, Michel A, Pellegrino T, Lalatonne Y, Wilhelm C (2016) Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels. ACS Nano 10(8):7627–7638. CrossRefGoogle Scholar
  43. Mazur M, Barras A, Kuncser V, Galatanu A, Zaitzev V, Turcheniuk KV, Woisel P, Lyskawa J, Laure W, Siriwardena A, Boukherroub R, Szunerits S (2013) Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors. Nanoscale 5(7):2692–2702. CrossRefGoogle Scholar
  44. Mrowiec B (2017) Nanomaterials in the environment. In: International Conference on Advances in Energy Systems and Environmental Engineering (ASEE17), Wrocław, p 22, 00119. CrossRefGoogle Scholar
  45. Na H, Song I, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148. CrossRefGoogle Scholar
  46. Naqvi et al (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed:983.
  47. Nations S, Wages M et al (2011a) Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83(8):1053–1061. CrossRefGoogle Scholar
  48. Nations S, Long M et al (2011b) Effects of ZnO nanomaterials on Xenopus laevis growth and development. Ecotoxicol Environ Saf 74(2):203–210. CrossRefGoogle Scholar
  49. Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Garland Pub, New YorkGoogle Scholar
  50. Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14(4):639–649. CrossRefGoogle Scholar
  51. Perelshtein I, Lipovsky A, Perkas N, Gedanken A, Moschini E, Mantecca P (2015) The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res 8(2):695–707. CrossRefGoogle Scholar
  52. Raeisi-Shahraki R et al (2012) Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. J Magn Magn Mater 324(22):3762–3765CrossRefGoogle Scholar
  53. Rivero M, del Campo A, Mayoral Á, Mazario E, Sánchez-Marcos J, Muñoz-Bonilla A (2016) Synthesis and structural characterization of ZnxFe3-xO4 ferrite nanoparticles obtained by an electrochemical method. RSC Adv 6(46):40067–40076. CrossRefGoogle Scholar
  54. Sahoo B, Devi KSP, Banerjee R, Maiti TK, Pramanik P, Dhara D (2013) Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces 5(9):3884–3893. CrossRefGoogle Scholar
  55. Saide K, Sherwood V, Wheeler G (2018) Paracetamol-induced liver injury modelled in Xenopus laevis embryos. Toxicol LettGoogle Scholar
  56. Saquib Q, al-Khedhairy AA, Ahmad J, Siddiqui MA, Dwivedi S, Khan ST, Musarrat J (2013) Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells. Toxicol Appl Pharmacol Elsevier Inc 273(2):289–297. CrossRefGoogle Scholar
  57. Tefft B et al (2015) Cell labeling and targeting with superparamagnetic iron oxide nanoparticles. J Vis Exp 19(1105):e53099Google Scholar
  58. Thambiayya K, Kaynar AM, Croix CMS, Pitt BR (2012) Functional role of intracellular labile zinc in pulmonary endothelium. Pulmonary Circulation 2(4):443–451CrossRefGoogle Scholar
  59. Tussellino M, Ronca R, Formiggini F, Marco ND, Fusco S, Netti PA, Carotenuto R (2015) Polystyrene nanoparticles affect Xenopus laevis development. J Nanopart Res 17(2).
  60. Vance M et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6(1):1769–1780CrossRefGoogle Scholar
  61. Vu MMT et al (2012) The DNLZ/HEP zinc-binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9. Protein Sci 21(2):258–267. CrossRefGoogle Scholar
  62. Wadhwa R, Ando H, Kawasaki H, Taira K, Kaul SC (2003) Targeting mortalin using conventional and RNA-helicase-coupled hammerhead ribozymes. EMBO Rep 4(6):595–601. CrossRefGoogle Scholar
  63. Wan J, Jiang X, Li H, Chen K (2012) Facile synthesis of zinc ferrite nanoparticles as non-lanthanide T1 MRI contrast agents. J Mater Chem 22:13500–13505CrossRefGoogle Scholar
  64. Warheit DB, Sayes CM, Reed KL (2009) Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 43(20):7939–7945. CrossRefGoogle Scholar
  65. Webster C et al (2016) An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment. Nanomedicine 11(6):643–656. CrossRefGoogle Scholar
  66. Wilkinson N, Pantopoulos K (2014) The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol 5(July):1–15. CrossRefGoogle Scholar
  67. Yamaji S, Tennant J, Tandy S, Williams M, Singh Srai SK, Sharp P (2001) Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells. FEBS Lett 507(2):137–141. CrossRefGoogle Scholar
  68. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40(7):4244–4258. CrossRefGoogle Scholar
  69. Zhang D-LD, Ghosh MCM, Rouault TAT (2014) The physiological functions of iron regulatory proteins in iron homeostasis—an update. Front Pharmacol 5:1–12. CrossRefGoogle Scholar
  70. Zhang Z, He P, Zhang J, Li Y, Wang Q (2017) Recent advances in magnetic targeting based on high magnetic field and magnetic particles. High Voltage 2(4):220–232. CrossRefGoogle Scholar
  71. Zhu S, Xu X, Rong R, Li B, Wang X (2016) Evaluation of zinc-doped magnetite nanoparticle toxicity in the liver and kidney of mice after sub-chronic intragastric administration. Toxicol Res Royal Society of Chemistry 5(1):97–106. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Synthesis and Electrochemical and Spectroscopic Characterization of Materials Group, Departamento de Química-Física Aplicada, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  2. 2.School of Biological SciencesUniversity of East AngliaNorwichUK
  3. 3.Departmento de Química Analítica, Instituto de Ciencia de Materiales de Aragón (ICMA/CSIC)Universidad de Zaragoza and CIBER-BBNZaragozaSpain
  4. 4.Macromolecular Engineering Group, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)MadridSpain
  5. 5.School of PharmacyUniversity of East AngliaNorwichUK
  6. 6.School of PharmacyQueen’s University BelfastBelfastUK

Personalised recommendations