Quantum-dots based materials for temperature sensing: effect of cyclic heating-cooling on fluorescence

  • Ying Chen
  • Weiling LuanEmail author
  • Shaofu Zhang
  • Fuqian YangEmail author
Research Paper


Using the temperature dependence of the fluorescence of quantum dots (QDs) in the sensing of temperature is a promising field. In this work, we systematically study the effect of cyclic heating and cooling on the fluorescence of CdSe/ZnS QD and PMMA-QD composite in air. The experimental results show that increasing the temperature causes red-shift of the PL (photoluminescence) emission peak and the decrease of the PL intensity, and decreasing the temperature causes blue-shift of the PL emission peak and the increase of the PL intensity for all the QDs presented in both media. There exists a critical temperature, above which the heating completely damages the surface structures of the QDs and leads to the loss of the luminescence characteristics of the QDs. Placing CdSe/ZnS QDs in PMMA causes blue-shift of the PL emission peak, which likely is due to the shift of the ground state energy of the QDs. The heating-cooling cycle with high peak temperature up to 310 °C does not change the crystal structure of the ZnS in the CdSe/ZnS QDs.


QDs Heating-cooling PL intensity Wavelength Irreversibility Temperature sensor 


Funding information

W Luan is grateful for the financial support from the National Natural Science Fund of China (51475166).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Argyros A, Barton GW, Yu HCY, Leonsaval SG (2010) Temperature effects on emission of quantum dots embedded in polymethylmethacrylate. Appl Opt 49:2749–2752CrossRefGoogle Scholar
  2. Costa-Fernandez JM (2006) Optical sensors based on luminescent quantum dots. Anal Bioanal Chem 384:37–40CrossRefGoogle Scholar
  3. De Bastida G, Arregui FJ, Goicoechea J, Matias IR (2006) Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer. IEEE Sensors J 6:1378–1379. CrossRefGoogle Scholar
  4. Fang H-H, Balazs DM, Protesescu L, Kovalenko MV, Loi MA (2015) Temperature-dependent optical properties of PbS/CdS core/shell quantum dot thin films: probing the wave function delocalization. J Phys Chem C 119:17480–17486. CrossRefGoogle Scholar
  5. Fernández-Delgado N, Herrera M, Tavabi AH, Luysberg M, Dunin-Borkowski RE, Rodriguez-Cantó PJ, Abargues R, Martínez-Pastor JP, Molina SI (2018) Structural and chemical characterization of CdSe-ZnS core-shell quantum dots. Appl Surf Sci 457:93–97. CrossRefGoogle Scholar
  6. Haldar D, Ghosh A, Bose S, Mondal S, Ghorai UK, Saha SK (2018) Defect induced photoluminescence in MoS 2 quantum dots and effect of Eu 3+ /Tb 3+ co-doping towards efficient white light emission. Opt Mater 79:12–20. CrossRefGoogle Scholar
  7. Humam NSB, Sato Y, Takahashi M, Kanazawa S, Tsumori N, Regreny P, Gendry M, Saiki T (2014) Redshifted and blueshifted photoluminescence emission of InAs/InP quantum dots upon amorphization of phase change material. Opt Express 22:14830–14839CrossRefGoogle Scholar
  8. Jing P, Zheng J, Ikezawa M, Liu X, Lv S, Kong X, Zhao J, Masumoto Y (2009) Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots. J Phys Chem C 113:13545–13550CrossRefGoogle Scholar
  9. Joshi A, Narsingi KY, Manasreh MO, Davis EA, Weaver BD (2006) Temperature dependence of the band gap of colloidal CdSe/ZnS core/shell nanocrystals embedded into an ultraviolet curable resin. Appl Phys Lett 89:253109–253179CrossRefGoogle Scholar
  10. Ke TT, Lo YL, Sung TW, Liao CC (2016) CdSe quantum dots embedded in matrices: characterization and application for low-pressure and temperature sensors. IEEE Sensors J 16:2404–2410CrossRefGoogle Scholar
  11. Kharangarh PR, Umapathy S, Singh G (2017) Effect of defects on quantum yield in blue emitting photoluminescent nitrogen doped graphene quantum dots. J Appl Phys 122:145107. CrossRefGoogle Scholar
  12. Lan X, Masala S, Sargent EH (2014) Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat Mater 13:233–240CrossRefGoogle Scholar
  13. Larrión B, Hernáez M, Arregui FJ, Goicoechea J, Bravo J, Matías IR (2009) Photonic crystal fiber temperature sensor based on quantum dot nanocoatings. J Sens 2009:1–6. CrossRefGoogle Scholar
  14. Lee T, Shimura K, Kim D (2018) Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots. Phys Chem Chem Phys 20:11954–11958. CrossRefGoogle Scholar
  15. Mintairov A et al (2004) Nanoindentation and near-field spectroscopy of single semiconductor quantum dots. Phys Rev B 69:155306CrossRefGoogle Scholar
  16. Szendrei K, Speirs M, Gomulya W, Jarzab D, Manca M, Mikhnenko OV, Yarema M, Kooi BJ, Heiss W, Loi MA (2012) Exploring the origin of the temperature-dependent behavior of PbS nanocrystal thin films and solar cells. Adv Funct Mater 22:1598–1605CrossRefGoogle Scholar
  17. Wan Z, Luan W, Tu S (2011) Size controlled synthesis of blue emitting core/shell nanocrystals via microreaction. J Phys Chem C 115:1569–1575CrossRefGoogle Scholar
  18. Wan Z, Yang H, Luan W, Tu ST, Zhou X (2010) Facile synthesis of monodisperse CdS nanocrystals via microreaction. Nanoscale Res Lett 5:130–137CrossRefGoogle Scholar
  19. Wang H, Yang A, Chen Z, Geng Y (2014) Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film. Optics and Spectroscopy (English translation of Optika i Spektroskopiya) 117:235–239. CrossRefGoogle Scholar
  20. Wu Y, Li IL, Shuang CR, Zhai JP (2008) Temperature sensor based on iodine-doped hollow core photonic crystal fiber. International Conference on Microwave and Millimeter Wave Technology:890–892Google Scholar
  21. Yang H, Luan W, Tu S, Wang ZM (2009) High-temperature synthesis of CdSe nanocrystals in a serpentine microchannel: wide size tunability achieved under a short residence time. Cryst Growth Des 9:1569–1574CrossRefGoogle Scholar
  22. Yang H, Luan W, Tu ST, Wang ZM (2008) Synthesis of nanocrystals via microreaction with temperature gradient: towards separation of nucleation and growth. Lab Chip 8:451–455CrossRefGoogle Scholar
  23. Yin S, Zhao Z, Luan W, Yang F (2016) Optical response of a quantum dot–epoxy resin composite: effect of tensile strain. RSC Adv 6:18126–18133CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Materials Program, Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations