Advertisement

Electrospun MnxCo0.5−xSn0.5O2 and SnO2 porous nanofibers and nanoparticles as anode materials for lithium-ion battery

  • Miao Shu
  • Xing LiEmail author
Research Paper
  • 44 Downloads

Abstract

The specific capacity (781 mAh g−1) of SnO2 as anode materials for lithium-ion batteries (LIBs) is much higher than that of commercial graphite materials (372 mAh g−1), which attracts great attention from researchers. In this paper, a series of MnxCo0.5−xSn0.5O2 (x = 0.00, 0.15, 0.25, 0.35, 0.50) and SnO2 porous nanofibers and nanoparticles are prepared through a single-spinneret electrospinning technique followed by a calcination process. The electrochemical properties of porous nanofibers and nanoparticles have been measured and discussed, and the results show that porous nanofibers have better performance when doped with manganese and cobalt components. With the increase of manganese contents, the electrochemical capability of the batteries is improved. As a demonstration, the Mn0.50Co0.00Sn0.5O2 (x = 0.50) porous nanofibers present the first discharge capacity of 1347.3 mAh g−1, and after 100 cycles, Mn0.50Co0.00Sn0.5O2 possesses the higher discharge capacity of 131.6 mAh g−1 when compared with the other materials.

Graphical abstract

MnxCo0.5−xSn0.5O2 (x = 0.5) porous nanofibers were prepared through an electrospinning technique with a calcination process, which present the first discharge capacity of 1347.3 mAh g−1 at a current density of 100 mAh g−1.

Keywords

Electrospinning Porous nanofibers Nanoparticles Anode materials Lithium-ion batteries Energy storage 

Notes

Funding information

The work was supported by the National Natural Science Foundation of China (21571110), the Natural Science Foundation of Zhejiang province (LY18B010003) and the K. C. Wong Magna Fund in Ningbo University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4626_MOESM1_ESM.doc (8.9 mb)
ESM 1 (DOC 9071 kb)

References

  1. Ahmed B, Anjum DH, Gogotsi Y, Alshareef HN (2017) Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 34:249–256CrossRefGoogle Scholar
  2. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098–16106CrossRefGoogle Scholar
  3. Aravindan V, Jinesh KB, Prabhakar RR, Kale VS, Madhavi S (2013) Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. Nano Energy 2:720–725CrossRefGoogle Scholar
  4. Chen J, Huang Y, Zhao F, Ye H, Wang Y, Zhou J, Liu Y, Li YA (2017) Hierarchical α-MoC1−x hybrid nanostructure for lithium-ion storage. J Mater Chem A 5:8125–8132CrossRefGoogle Scholar
  5. Cho JS, Kang YC (2015) Nanofibers comprising yolk-shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the Kirkendall diffusion effect and their electrochemical properties. Nano Small Micro 11:4673–4681Google Scholar
  6. Connor PA, Irvine JTS (2001) Novel tin oxide spinel-based anodes for Li-ion batteries. J Power Sources 97–8:223–225CrossRefGoogle Scholar
  7. Gupta A, Dhakate SR, Gurunathan P, Ramesha K (2017) High rate capability and cyclic stability of hierarchically porous tin oxide (IV)-carbon nanofibers as anode in lithium ion batteries. Appl Nanosci 7:449–462CrossRefGoogle Scholar
  8. Ji G, Ma Y, Lee JY (2011a) Mitigating the initial capacity loss (ICL) problem in high-capacity lithium ion battery anode materials. J Mater Chem 21:9819–9824CrossRefGoogle Scholar
  9. Ji LW, Tan ZK, Kuykendall T, An EJ, Fu YB, Battaglia V, Zhang YG (2011b) Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. Energy Environ Sci 4:3611–3616CrossRefGoogle Scholar
  10. Kumar V, Singh K, Kumar A, Kumar M, Singh K, Vij A, Thakur A (2017) Effect of solvent on crystallographic, morphological and optical properties of SnO2 nanoparticles. Mater Res Bull 85:202–208CrossRefGoogle Scholar
  11. Kumar V, Singh K, Jain M, Ju M, Kumar A, Sharma J, Vij A, Thakur A (2018) Role of Cu in engineering the optical properties of SnO2 nanostructures: structural, morphological and spectroscopic studies. Appl Surf Sci 444:552–558CrossRefGoogle Scholar
  12. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRefGoogle Scholar
  13. Li YM, Lv XJ, Lu J, Li JH (2010a) Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J Phys Chem C 114:21770–21774CrossRefGoogle Scholar
  14. Li LJ, Yu K, Tang Z, Zhu ZQ, Wan Q (2010b) Room-temperature ferromagnetism properties of Cu-doped SnO2 nanowires. J Appl Phys 107:014303–1-014303-5CrossRefGoogle Scholar
  15. Liang JF, Wei W, Zhong D, Yang QL, Li LD, Guo L (2012) One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 4:454–459CrossRefGoogle Scholar
  16. Lübke M, Ning D, Armer CF, Howard D, Brett DJL, Liu ZL, Darr JA (2017) Evaluating the potential benefits of metal ion doping in SnO2 negative electrodes for lithium ion batteries. Electrochim Acta 242:400–407CrossRefGoogle Scholar
  17. Ma YJ, Ma Y, Ulissi U, Ji YC, Streb C, Bresser D, Passerini S (2018) Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes. Electrochim Acta 277:100–109CrossRefGoogle Scholar
  18. Mahmood N, Zhang CZ, Liu F, Zhu JH, Hou YL (2013) Hybrid of Co3Sn2@co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 7:10307–10318CrossRefGoogle Scholar
  19. Nithyadharseni P, Abhilash KP, Petnikota S, Anilkumar MR, Jose R, Ozoemena KI, Vijayaraghavan R, Kulkarni P, Balakrishna G, Chowdari BVR, Adams S, Reddy MV (2017) Synthesis and lithium storage properties of Zn, co and mg doped SnO2 nano materials. Electrochim Acta 247:358–370CrossRefGoogle Scholar
  20. Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for Li-ion batteries. Chem Rev 114:11444–11502CrossRefGoogle Scholar
  21. Peng C, Chen B, Qin Y, Yang S, Li C, Zuo Y, Liu S, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074–1081CrossRefGoogle Scholar
  22. Su LW, Zhong YR, Zhou Z (2013) Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core-shell Fe3O4@C and Fe@C microspheres. J Mater Chem A 1:15158–15166CrossRefGoogle Scholar
  23. Sun Y, Hu X, Luo W, Xia F, Huang Y (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23:2436–2444CrossRefGoogle Scholar
  24. Tian W, Hu H, Wang YX, Li P, Liu JY, Liu JL, Wang XB, Xu XD, Li ZT, Zhao QS, Ning H, Wu WT, Wu MB (2018) Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage. ACS Nano 12:1990–2000CrossRefGoogle Scholar
  25. Wang Y, Wang Y, Liu J, Pan L, Tian W, Wu M, Qiu J (2017) Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage. Carbon 122:344–351CrossRefGoogle Scholar
  26. Wen Z, Wang Q, Zhang Q, Li J (2007) In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes: A Novel Composite with Porous-Tube Structure as Anode for Lithium Batteries. Adv Funct Mater 17:2772–2778CrossRefGoogle Scholar
  27. Xiang JY, Wang XL, Xia XH, Zhang L, Zhou Y, Shi SJ, Tu JP (2010) Enhanced high rate properties of ordered porous Cu2O film as anode for lithium ion batteries. Electrochim Acta 55:4921–4925CrossRefGoogle Scholar
  28. Yang L, Li X, He S, Du G, Yu X, Liu J, Gao Q, Hu R, Zhu M (2016) Mesoporous Mo2C/N-doped carbon heteronanowires as high-rate and long-life anode materials for Li-ion batteries. J Mater Chem A 4:10842–10849CrossRefGoogle Scholar
  29. Zhang JR, Gao L (2004) SnO2 thin films from an aqueous citrato peroxo Sn (IV) precursor. J Solid State Chem 177:1425–1430CrossRefGoogle Scholar
  30. Zhu ZQ, Wang SW, Du J, Jin Q, Zhang TR, Cheng FY, Chen J (2013) Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett 14:153–157CrossRefGoogle Scholar
  31. Zhu CC, Shu J, Wu XZ, Li P, Li X (2015) Electrospun V2O5 micro/nanorods as cathode materials for lithiumion battery. J Electroanal Chem 759:184–189CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Faculty of Materials Science and Chemical EngineeringNingbo UniversityNingboChina

Personalised recommendations