Advertisement

Enhanced photocatalytic activity of biosynthesized Au-Ag/TiO2 catalyst by removing excess anchored biomolecules

  • Xinde Jiang
  • Zhenxi WangEmail author
  • Xiaohang Zhang
  • Guixian Jiang
  • Yong Peng
  • Sheng Xu
  • Meng Cao
  • Xin Dai
  • Zuhan Liu
  • Jianye Ma
Research Paper
  • 42 Downloads

Abstract

A green bioreduction method was used to prepare highly efficient supported TiO2 photocatalysts with bimetallic (Au-Ag) nanoparticles at room temperature using Cinnamomum camphora leaf extract as both the protective agent and reducing agent. The resulted Au-Ag/TiO2 exhibits high photocatalytic activity toward the degradation of organic dyes. It was demonstrated that after some of the biomolecules were removed through ionic-liquid extraction and/or calcinations, the Au-Ag/TiO2 photocatalyst exhibits significantly enhanced catalytic performance toward the degradation of methyl orange compared to the pristine untreated catalyst. As a result, 300 mL of 20 mg/mL methyl orange can be fully degraded in 30 min. These can be explained by the sufficient biomolecules could protect the nanoparticles stay in small size, but excess biomolecules played an unfavorable role in hindering the electron transportation during the catalytic reaction. The low-cost preparation, the high activity, together with the good stability and recyclability make this developed Au-Ag/TiO2 a promising photocatalyst toward the degradation of wastewater.

Keywords

TiO2 photocatalyst Biomolecules Bimetallic nanoparticles Organic dye, nanostructured catalysts Nanostructured catalysts 

Notes

Acknowledgements

This project was financially supported by Natural Science Foundation of Jiangxi Provincial Department of Education (GJJ171017, GJJ161127), Natural Science Foundation of China (21706113, 21506088, and 51303074), and Natural Science Foundation of Jiangxi Province (20161BBF60061, 20161BAB213061, and 20161BAB216104).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abbasi A, Ghanbari D, Salavati-Niasari M, Hamadanian M (2016) Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3-TiO2 nanoparticles and nanocomposites. J Mater Sci Mater Electron 27:4800–4809CrossRefGoogle Scholar
  2. Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang P, Somorjai GA (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-ozone treatment. J Phys Chem C 113:6150–6155CrossRefGoogle Scholar
  3. Angthararuk D, Sutthivaiyakit P, Blaise C, Gagné F, Sutthivaiyakit S (2015) Photo-catalysis of bromacil under simulated solar light using Au/TiO2: evaluation of main degradation products and toxicity implications. Environ Sci Pollut Res 22:1468–1479CrossRefGoogle Scholar
  4. Bera P, Hegde MS et al (2015) Noble metal ions in CeO2 and TiO2: synthesis, structure and catalytic properties. RSC Adv 5:94949–94979CrossRefGoogle Scholar
  5. Gu J, Zhang YW, Tao F (2012) Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem Soc Rev 41:8050–8065CrossRefGoogle Scholar
  6. Gupta B, Melvin AA, Matthews T, Dash S, Tyagi AK (2016) TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renew Sust Energ Rev 58:1366–1375CrossRefGoogle Scholar
  7. He L, Liu C, Tang J, Zhou Y, Yang H, Liu R, Hu J (2018) Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis. Appl Surf Sci 434:265–272CrossRefGoogle Scholar
  8. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104CrossRefGoogle Scholar
  9. Huang JL, Lin LQ, Sun DH et al (2015) Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44:6330–6374CrossRefGoogle Scholar
  10. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638CrossRefGoogle Scholar
  11. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20(38):385601CrossRefGoogle Scholar
  12. Kamat PV (2017) Semiconductor surface chemistry as holy grail in photocatalysis and photovoltaics. Acc Chem Res 50(3):527–531CrossRefGoogle Scholar
  13. Kenens B, Chamtouri M, Aubert R, Miyakawa K, Hayasaka Y, Naiki H, Watanabe H, Inose T, Fujita Y, Lu G, Masuhara A, Uji-i H (2016) Solvent-induced improvement of Au photo-deposition and resulting photo-catalytic efficiency of Au/TiO2. RSC Adv 6:97464–97468CrossRefGoogle Scholar
  14. Khan M, Xu JN, Chen N et al (2013) Effect of Ag doping concentration on the electronic and optical properties of anatase TiO2: a DFT-based theoretical study. Res Chem Intermed 39:1633–1644CrossRefGoogle Scholar
  15. Lee SY, Park SJ (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19:1761–1769CrossRefGoogle Scholar
  16. Liang S, Zhang D, Pu X, Yao X, Han R, Yin J, Ren X (2019) A novel Ag2O/g-C3N4 p-n heterojunction photocatalysts with enhanced visible and near-infrared light activity. Sep Purif Technol 210:786–797Google Scholar
  17. Li Y, Zhang BP, Zhao JX (2014) Enhanced photocatalytic performance of Au-Ag alloy modified ZnO nanocomposite films. J Alloys Compd 586:663–668CrossRefGoogle Scholar
  18. Liu P, Qin R, Fu G, Zheng N (2017) Surface coordination chemistry of metal nanomaterials. J Am Chem Soc 139:2122–2131CrossRefGoogle Scholar
  19. Pang YL, Lim S, Ong HC, Chong WT (2014) A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts. Appl Catal A Gen 481:127–142CrossRefGoogle Scholar
  20. Pattanaik P, Sahoo MK (2014) TiO2 photocatalysis: progress from fundamentals to modification technology. Desalin Water Treat 52:6567–6590CrossRefGoogle Scholar
  21. Selcuk H, Zaltner W, Sene JJ, Bekbolet M, Anderson MA (2004) Photocatalytic and photoelectrocatalytic performance of 1% Pt doped TiO2 for the detoxification of water. J Appl Electrochem 34:653–658CrossRefGoogle Scholar
  22. Su R, Tiruvalam R, He Q, Dimitratos N, Kesavan L, Hammond C, Lopez-Sanchez JA, Bechstein R, Kiely CJ, Hutchings GJ, Besenbacher F (2012) Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 6:6284–6292CrossRefGoogle Scholar
  23. Tanaka A, Fuku K, Nishi T, Hashimoto K, Kominami H (2013) Functionalization of Au/TiO2 plasmonic photocatalysts with Pd by formation of a core-shell structure for effective dechlorination of chlorobenzene under irradiation of visible light. J Phys Chem C 117:16983–16989CrossRefGoogle Scholar
  24. Wongwisate P, Chavadej S, Gulari E, Sreethawong T, Rangsunvigit P (2011) Effects of monometallic and bimetallic Au-Ag supported on sol-gel TiO2 on photocatalytic degradation of 4-chlorophenol and its intermediates. Desalination 272:154–163CrossRefGoogle Scholar
  25. Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132:4984–4985CrossRefGoogle Scholar
  26. Wu T, Zhang L, Gao JP et al (2013) Fabrication of graphene oxide decorated with Au-Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J Mater Chem A 1(25):7384–7390CrossRefGoogle Scholar
  27. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl 48(1):60–103CrossRefGoogle Scholar
  28. Xia H, Wu S, Bi J, Zhang S (2017) Controlled preparation of M(Ag, Au)/TiO2 through sulfydryl-assisted method for enhanced photocatalysis. Nanotechnology 28(46):465604CrossRefGoogle Scholar
  29. Xu F, Mei JJ, Zheng MQ et al (2017) Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting. J Alloys Compd 693:1124–1132CrossRefGoogle Scholar
  30. Yang F, Huang J, Odoom-Wubah T, Hong Y, du M, Sun D, Jia L, Li Q (2015) Efficient Ag/CeO2 catalysts for CO oxidation prepared with microwave-assisted biosynthesis. Chem Eng J 269:105–112CrossRefGoogle Scholar
  31. Zhang GL, Du MM, Li QB et al (2013) Green synthesis of Au-Ag alloy nanoparticles using Cacumenplatycladi extract. RSC Adv 3:1878–1884CrossRefGoogle Scholar
  32. Zhang YH, Zhang N, Tang ZR (2014) Graphene oxide as a surfactant and support for in-situ synthesis of Au-Pd nanoalloys with improved visible light photocatalytic activity. J Phys Chem C 118(10):5299–5308CrossRefGoogle Scholar
  33. Zhao Q, Sun J, Li S, Huang C, Yao W, Chen W, Zeng T, Wu Q, Xu Q (2018) Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal 8(12):11863–11874CrossRefGoogle Scholar
  34. Zhou W, Fu H (2018) Defect-mediated electron-hole separation in semiconductor photocatalysis. Inorg Chem Front 5(6):1240–1254CrossRefGoogle Scholar
  35. Zhou X, Liu N, Schmuki P (2017) Photocatalysis with TiO2 nanotubes: “colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal 7(5):3210–3235CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xinde Jiang
    • 1
  • Zhenxi Wang
    • 1
    Email author
  • Xiaohang Zhang
    • 1
  • Guixian Jiang
    • 1
  • Yong Peng
    • 1
  • Sheng Xu
    • 1
  • Meng Cao
    • 1
  • Xin Dai
    • 1
  • Zuhan Liu
    • 1
  • Jianye Ma
    • 1
  1. 1.College of ScienceNanchang Institute of TechnologyNanchangChina

Personalised recommendations