Advertisement

Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS

  • Stephanie Laughton
  • Adam Laycock
  • Frank von der Kammer
  • Thilo Hofmann
  • Elizabeth A. Casman
  • Sónia M. Rodrigues
  • Gregory V. LowryEmail author
Research Paper
  • 36 Downloads

Abstract

Copper oxide and hydroxide nanoparticles (Cu-NPs) are components of some commercial pesticides. When these Cu-NPs dissolve in the environment, their size distribution, efficacy, and toxicity are altered. Since acute toxicity screens typically involve pristine NPs, quantification of the transformation of their size distribution in edible leaf vegetables is necessary for accurate consumer risk assessment. Single particle ICP-MS was used to investigate the persistence of three forms of Cu-NPs following foliar application to live lettuce (Lactuca sativa): CuO NP, Cu(OH)2 NP, and Kocide 3000®. A methanol-based digestion method was used to minimize Cu-NP dissolution during extraction from the leaf tissues. After dosing, the NPs associated with the leaf tissues were characterized over a 9-day period to monitor persistence. Nanoparticle counts and total copper mass concentrations remained constant, though the particle size distributions shifted down over time. Washing the leaves in tap water resulted in removal of total copper while the number of Cu-NPs remaining depended on the form applied. This work indicates that washing of lettuce preferentially removed dissolved Cu over Cu-NPs, and that the amount of residual Cu-NPs remaining is low when applied at the recommended rates for Kocide 3000®.

Keywords

Nanoparticle fate Copper nanoparticle Nano-enabled agrochemicals Lettuce Nanoparticle transformation Single particle ICP-MS Environmental issues 

Notes

Funding information

This material is based upon work supported by the US National Science Foundation (NSF) and the Environmental Protection Agency (EPA) under NSF Cooperative Agreement EF-1266252, Center for the Environmental Implications of NanoTechnology (CEINT), from the NSF Integrated Graduate Education and Research Traineeship Nanotechnology Environmental Effects and Policy (IGERT-NEEP) (DGE-0966227), and CBET-1530563 (NanoFARM). This study was financially supported by Austrian FFG in the framework of the ERA-NET SIINN project 849880 (NanoFarm). Thanks are also due for the financial support to CESAM (UID/AMB/50017-POCI-01-0145-FEDER-007638), to Portuguese FCT/MCTES through national funds (PIDDAC), and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020 (project references in Portugal: SIINN/0001/2014 (NanoFarm) and POCI-01-0145-FEDER-016749 and PTDC/AGR-PRO/6262/2014 (NanoFertil)). S. M. Rodrigues acknowledges the financial support from FCT (Project IF/01637/2013).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4620_MOESM1_ESM.pdf (2.6 mb)
ESM 1 (PDF 2629 kb)

References

  1. Adeleye AS, Conway JR, Perez T, Rutten P, Keller AA (2014) Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ Sci Technol 48(21):12561–12568CrossRefGoogle Scholar
  2. Apodaca SA et al (2017) Physiological and biochemical effects of nanoparticulate copper, bulk copper, copper chloride, and kinetin in kidney bean (Phaseolus Vulgaris) plants. Sci Total Environ 599–600:2085–2094CrossRefGoogle Scholar
  3. Bao D, Oh ZG, Chen Z (2016) Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Frontiers Plant Sci 7:32Google Scholar
  4. Chowdhury MA et al (2013) Detection of the residues of nineteen pesticides in fresh vegetable samples using gas chromatography-mass spectrometry. Food Control 34(2):457–465CrossRefGoogle Scholar
  5. Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA (2015) Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environ Sci Technol 49(5):2749–2756CrossRefGoogle Scholar
  6. Cudennec Y, Lecerf A (2003) The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci 5:1471–1474CrossRefGoogle Scholar
  7. Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H (2015) Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma–mass spectrometry analysis. Environ Sci Technol 49(5):3007–3014CrossRefGoogle Scholar
  8. Dan Y, Ma X, Zhang W, Liu K, Stephan C, Shi H (2016) Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO2 nanoparticles. Anal Bioanal Chem 408:5157–5167CrossRefGoogle Scholar
  9. Deng Y, Petersen EJ, Challis KE, Rabb SA, Holbrook RD, Ranville JF, Nelson BC, Xing B (2017) Multiple method analysis of TiO 2 nanoparticle uptake in rice (Oryza Sativa L.) plants. Environ Sci Technol 51(18):10615–10623CrossRefGoogle Scholar
  10. Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742CrossRefGoogle Scholar
  11. E.I. du Pont de Nemours and Company (2006) DuPont Kocide 3000. Wilmington, DelawareGoogle Scholar
  12. Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci-Nano 3(5):1072–1079CrossRefGoogle Scholar
  13. Fenik J, Tankiewicz M, Biziuk M (2011) Properties and determination of pesticides in fruits and vegetables. Trends in Anal Chem 30(6):814–826CrossRefGoogle Scholar
  14. Gao X, Spielman-Sun E, Rodrigues SM, Casman EA, Lowry GV (2017) Time and nanoparticle concentration affect the extractability of Cu from CuO NP-amended soil. Environ Sci Technol 51(4):2226–2234CrossRefGoogle Scholar
  15. González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2008) Determination of 23 pesticide residues in leafy vegetables using gas chromatography-ion trap mass spectrometry and analyte protectants. J Chromatogr A 1196(1):100–109CrossRefGoogle Scholar
  16. Hong J et al (2016) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis Sativus) fruit quality. Sci Total Environ 563–564:904–911CrossRefGoogle Scholar
  17. Huang Y, Zhao L, Keller AA (2017) Interactions, transformations and bioavailability of nano-copper exposed to root exudates. Environ Sci Technol 51:9074–9083Google Scholar
  18. ISO (2017) ISO/TS 19590:2017 Nanotechnologies—size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometryGoogle Scholar
  19. Jiménez-Lamana J, Wojcieszek J, Jakubiak M, Asztemborska M, Szpunar J (2016) Single particle ICP-MS characterization of platinum nanoparticles uptake and bioaccumulation by Lepidium Sativum and Sinapis Alba plants. J Anal At Spectrom 31(11):2321–2329CrossRefGoogle Scholar
  20. Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684CrossRefGoogle Scholar
  21. Keller AA, Adeleye AS, Conway JR, Garner KL, Zhao L, Cherr GN, Hong J, Gardea-Torresdey JL, Godwin HA, Hanna S, Ji Z, Kaweeteerawat C, Lin S, Lenihan HS, Miller RJ, Nel AE, Peralta-Videa JR, Walker SL, Taylor AA, Torres-Duarte C, Zink JI, Zuverza-Mena N (2017) Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 7:28–40CrossRefGoogle Scholar
  22. Keller AA, Huang Y, Nelson J (2018) Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. J Nanopart Res 20:101CrossRefGoogle Scholar
  23. Kent RD, Vikesland PJ (2016) Dissolution and persistence of copper-based nanomaterials in undersaturated solutions with respect to cupric solid phases. Environ Sci Technol 50(13):6772–6781CrossRefGoogle Scholar
  24. Kińska K, Jiménez-Lamana J, Kowalska J, Krasnodębska-Ostręga B, Szpunar J (2018) Study of the uptake and bioaccumulation of palladium nanoparticles by Sinapis Alba using single particle ICP-MS. Sci Total Environ 615:1078–1085CrossRefGoogle Scholar
  25. Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca Sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106CrossRefGoogle Scholar
  26. Lawrence JR, Dynes JJ, Korber DR, Swerhone GDW, Leppard GG, Hitchcock AP (2012) Monitoring the fate of copper nanoparticles in river biofilms using scanning transmission X-ray microscopy (STXM). Chem Geol 329:18–25CrossRefGoogle Scholar
  27. Lewis KA, Tzilivakis J, Warner D, Green A (2016) An international database for pesticide risk assessments and management. Human Ecol Risk Assess 22(4):1050–1064CrossRefGoogle Scholar
  28. Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca Sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:42CrossRefGoogle Scholar
  29. Lu C, Qi L, Yang J, Zhang D, Wu N, Ma J (2004) Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. J Phys Chem B 108(46):17825–17831CrossRefGoogle Scholar
  30. Ma R et al (2014) Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide. Environ Sci: Nano 1(4):347–357Google Scholar
  31. May TW, Wiedmeyer RH (1998) A table of polyatomic interferences in ICP-MS. Atom Spectrom 19(5):150–155Google Scholar
  32. Misra SK, Dybowska A, Berhanu D, Croteau MN, Luoma SN, Boccaccini AR, Valsami-Jones E (2012) Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies. Environ Sci Technol 46(2):1216–1222CrossRefGoogle Scholar
  33. Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF (2012) Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J Anal Atom Spectrom 27(7):1131–1142CrossRefGoogle Scholar
  34. Montaño MD, Lowry GV, von der Kammer F, Blue J, Ranville JF (2014) Current status and future direction for examining engineered nanoparticles in natural systems. Environ Chem 11(4):351–366CrossRefGoogle Scholar
  35. Navratilova J, Praetorius A, Gondikas A, Fabienke W, von der Kammer F, Hofmann T (2015) Detection of engineered copper nanoparticles in soil using single particle ICP-MS. Int J Environ Res Public Health 12(12):15756–15768CrossRefGoogle Scholar
  36. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Gray EP, Higgins CP, Ranville JF (2012) Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ Sci Technol 46(22):12272–12280CrossRefGoogle Scholar
  37. Peters RJB et al (2014) Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat characterisation of nanomaterials in biological samples. Anal Bioanal Chem 406(16):3875–3885Google Scholar
  38. Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503CrossRefGoogle Scholar
  39. Rodrigues SM, Demokritou P, Dokoozlian N, Hendren CO, Karn B, Mauter MS, Sadik OA, Safarpour M, Unrine JM, Viers J, Welle P, White JC, Wiesner MR, Lowry GV (2017) Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ Sci-Nano 4(4):767–781CrossRefGoogle Scholar
  40. Scanlan et al (2013) Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 7(12):10681–10694CrossRefGoogle Scholar
  41. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529CrossRefGoogle Scholar
  42. Servin A et al (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17(2):1–21CrossRefGoogle Scholar
  43. Spielman-Sun E, Lombi E, Donner E, Howard D, Unrine JM, Lowry GV (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum Aestivum). Environ Sci Technol 51:7361–7368CrossRefGoogle Scholar
  44. Tuoriniemi J, Cornelis G, Hassellöv M (2012) Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal Chem 84(9):3965–3972CrossRefGoogle Scholar
  45. U.S. EPA (1996) Method 3050B: acid digestion of sediments, sludges, and soils. Revision 2Google Scholar
  46. Vencalek BE, Laughton SN, Spielman-Sun E, Rodrigues SM, Unrine JM, Lowry GV, Gregory KB (2016) In situ measurement of CuO and Cu(OH)2 nanoparticle dissolution rates in quiescent freshwater mesocosms. Environ Sci Technol Letters 3(10):375–380CrossRefGoogle Scholar
  47. Wang L et al (2014) Copper release from copper nanoparticles in the presence of natural organic matter. Water Res 68:12–23CrossRefGoogle Scholar
  48. Wang P, Lombi E, Zhao F, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends in Plant Sci 21(8):699–712CrossRefGoogle Scholar
  49. Wang Z et al (2013) Biological and environmental transformations of copper-based nanomaterials. Am Chem Soc Nano 7(10):8715–8727Google Scholar
  50. Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S (2017) Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ Sci Technol 51(9):5242–5251CrossRefGoogle Scholar
  51. Yarwood CE, Hazen WE (1944) The relative humidity at leaf surfaces. Am J Botany 31(3):129–135CrossRefGoogle Scholar
  52. Zhang Z, Guo H, Carlisle T, Mukherjee A, Kinchla A, White JC, Xing B, He L (2016) Evaluation of postharvest washing on removal of silver nanoparticles (AgNPs) from spinach leaves. J Agric Food Chem 64(37):6916–6922CrossRefGoogle Scholar
  53. Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA (2016) Metabolomics to detect response of lettuce (Lactuca Sativa) to Cu(OH) 2 nanopesticides: oxidative stress response and detoxification mechanisms. Environ Sci Technol 50(17):9697–9707CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Center for Environmental Implications of NanoTechnology (CEINT)Carnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Environmental GeosciencesUniversity of ViennaViennaAustria
  4. 4.Department of Engineering and Public PolicyCarnegie Mellon UniversityPittsburghUSA
  5. 5.Department of Chemistry & Centre for Environmental and Marine Studies (CESAM)Universidade de AveiroAveiroPortugal

Personalised recommendations