One-step facile route to glucose/copper cobalt sulfide nanorod for high-performance asymmetric supercapacitors

  • Fangping WangEmail author
  • Jinfeng Zheng
  • Jing Ma
  • Kailing Zhou
  • Qizhao Wang
Research Paper


In this work, club-like glucose/copper cobalt sulfide (C@CuCo2S4) electrode material has been firstly synthesized via a hydrothermal method using glucose as a carbon source. The morphology and structure properties of the composite materials are investigated by SEM, TEM, XRD, XPS, and EDS. The galvanostatic charge-discharge test of C@CuCo2S4 shows a great specific capacitance of 854 F g−1 at a discharge current density of 1 A g−1, which is much higher than that of the precursor CuCo2S4. Furthermore, an asymmetric supercapacitor using the C@CuCo2S4 electrode and activated carbon is assembled, which exhibits high energy density of 37.8 Wh kg−1 at a power density of 400 W kg−1 and excellent cycling stability with 96.5% capacitance retention after 7000 cycles at a current density of 5 A g−1. In addition, two asymmetric devices in a series have better practical application value.


CuCo2S4 Glucose Nanocomposite Supercapacitors Nanorods 


Funding information

This research was financially supported by the National Natural Science Foundation of China (21065010).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bharathy G, Raji P (2017) Room temperature ferromagnetic behavior of Mn doped NiO nanoparticles: a suitable electrode material for supercapacitors. J Mater Sci Mater Electron 28:17889–17895CrossRefGoogle Scholar
  2. Chang Q, Li L, Sai L, Shi W, Chen Q, Huang L (2017) Interconnected binary carbon hybrids for supercapacitor electrode. Electrochim Acta 251:293–300CrossRefGoogle Scholar
  3. Chen J, Qiu J, Wang B, Feng H, Yu Y, Sakai E (2017) Manganese dioxide/biocarbon composites with superior performance in supercapacitors. J Electroanal Chem 791:159–166CrossRefGoogle Scholar
  4. Cheng S, Shi T, Chen C, Zhong Y, Huang Y, Tao X, Li J, Liao G, Tang Z (2017) Construction of porous CuCo2S4 nanorod arrays via anion exchange for high-performance asymmetric supercapacitor. Sci Rep 7:6681CrossRefGoogle Scholar
  5. De Koninck M, Poirier S-C, Marsan Bt (2006) CuxCo3−xO4 used as bifunctional electrocatalyst. J Electrochem Soc 153:A2103CrossRefGoogle Scholar
  6. Guo M, Balamurugan J, Thanh TD, Kim NH, Lee JH (2016) Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors. J Mater Chem A 4:17560–17571CrossRefGoogle Scholar
  7. Guo SH, Yuan PW, Wang J, Chen WQ, Ma KY, Liu F, Cheng JP (2017) One-step synthesis of copper-cobalt carbonate hydroxide microsphere for electrochemical capacitors with superior stability. J Electroanal Chem 807:10–18CrossRefGoogle Scholar
  8. Hari Mohan E, Nanaji K, Anandan S, Sarada VB, Ramakrishna M, Jyothirmayi A, Appa Rao BV, Narasinga Rao T (2019) One-step induced porous graphitic carbon sheets as supercapacitor electrode material with improved rate capability. Mater Lett 236:205–209CrossRefGoogle Scholar
  9. Hu X, Nan H, Liu M, Liu S, An T, Tian H (2019) Battery-like MnCo2O4 electrode materials combined with active carbon for hybrid supercapacitors. Electrochim Acta 306:599–609CrossRefGoogle Scholar
  10. Huo J, Wu J, Zheng M, Tu Y, Lan Z (2016) Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells. J Power Sources 304:266–272CrossRefGoogle Scholar
  11. Ismail FM, Ramadan M, Abdellah AM, Ismail I, Allam NK (2018) Mesoporous spinel manganese zinc ferrite for high-performance supercapacitors. J Electroanal Chem 817:111–117CrossRefGoogle Scholar
  12. Kuang M, Li TT, Chen H, Zhang SM, Zhang LL, Zhang YX (2015) Hierarchical Cu2O/CuO/Co3O4 core-shell nanowires: synthesis and electrochemical properties. Nanotechnology 26:304002CrossRefGoogle Scholar
  13. Lang X, Zhang H, Xue X, Li C, Sun X, Liu Z, Nan H, Hu X, Tian H (2018) Rational design of La0.85Sr0.15MnO3@NiCo2O4 Core–Shell architecture supported on Ni foam for high performance supercapacitors. J Power Sources 402:213–220CrossRefGoogle Scholar
  14. Li Z, Wu L, Wang L, Gu A, Zhou Q (2017) Nickel cobalt sulfide nanosheets uniformly anchored on porous graphitic carbon nitride for supercapacitors with high cycling performance. Electrochim Acta 231:617–625CrossRefGoogle Scholar
  15. Li Y, Wang H, Wang L, Mao Z, Wang R, He B, Gong Y, Hu X (2019) Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high-power Na-ion capacitors. Small 15:1804539CrossRefGoogle Scholar
  16. Liang K, Ju L, Koul S, Kushima A, Yang Y (2018) Self-supported tin sulfide porous films for flexible aluminum-ion batteries. Adv Energy Mater:1802543CrossRefGoogle Scholar
  17. Liao L, Zhang H, Li W, Huang X, Xiao Z, Xu K, Yang J, Zou R, Hu J (2017) Facile synthesis of maguey-like CuCo2O4 nanowires with high areal capacitance for supercapacitors. J Alloys Compd 695:3503–3510CrossRefGoogle Scholar
  18. Lin J, Jia H, Liang H, Chen S, Cai Y, Qi J, Qu C, Cao J, Fei W, Feng J (2018) Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors. Chem Eng J 336:562–569CrossRefGoogle Scholar
  19. Liu L-L, Annamalai KP, Tao Y-S (2016a) A hierarchically porous CuCo2S4/graphene composite as an electrode material for supercapacitors. New Carbon Mater 31:336–342CrossRefGoogle Scholar
  20. Liu S, Hui KS, Hui KN, Jadhav VV, Xia QX, Yun JM, Cho YR, Mane RS, Kim KH (2016b) Facile synthesis of microsphere copper cobalt carbonate hydroxides electrode for asymmetric supercapacitor. Electrochim Acta 188:898–908CrossRefGoogle Scholar
  21. Meng Lian XW, Wang Q (2017) A novel and facile step-by-step hydrothermal synthesis of flower-like C@Ni0.7Co0.3(OH)2 for supercapacitors: understanding the excellent cycling stability. Mater Lett 207:16–20CrossRefGoogle Scholar
  22. Miao P, He J, Sang Z, Zhang F, Guo J, Su D, Yan X, Li X, Ji H (2018) Hydrothermal growth of 3D graphene on nickel foam as a substrate of nickel-cobalt-sulfur for high-performance supercapacitors. J Alloys Compd 732:613–623CrossRefGoogle Scholar
  23. Mohammadi A, Arsalani N, Tabrizi AG, Moosavifard SE, Naqshbandi Z, Ghadimi LS (2018) Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors. Chem Eng J 334:66–80CrossRefGoogle Scholar
  24. Moyo B, Momodu D, Fasakin O, Bello A, Dangbegnon J, Manyala N (2017) Electrochemical analysis of nanoporous carbons derived from activation of polypyrrole for stable supercapacitors. J Mater Sci 53:5229–5241CrossRefGoogle Scholar
  25. Nan H, Hu X, Tian H (2019) Recent advances in perovskite oxides for anion-intercalation supercapacitor: a review. Mater Sci Semicond Process 94:35–50CrossRefGoogle Scholar
  26. Pande SA, Pandit B, Sankapal BR (2017) Electrochemical approach of chemically synthesized HgS nanoparticles as supercapacitor electrode. Mater Lett 209:97–101CrossRefGoogle Scholar
  27. Ranganatha S, Munichandraiah N (2019) Solvothermal synthesis of mesoporous NiCoP for high performance electrochemical supercapacitors. Mater Chem Phys 224:124–128CrossRefGoogle Scholar
  28. Sahoo S, Mondal R, Late DJ, Rout CS (2017) Electrodeposited nickel cobalt manganese based mixed sulfide nanosheets for high performance supercapacitor application. Microporous Mesoporous Mater 244:101–108CrossRefGoogle Scholar
  29. Shanmugavani A, Selvan RK (2016) Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim Acta 188:852–862CrossRefGoogle Scholar
  30. Shen J, Tang J, Dong P, Zhang Z, Ji J, Baines R, Ye M (2016) Construction of three-dimensional CuCo2S4/CNT/graphene nanocomposite for high performance supercapacitors. RSC Adv 6:13456–13460CrossRefGoogle Scholar
  31. Tang J, Ge Y, Shen J, Ye M (2016) Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance. Chem Commun (Camb) 52:1509–1512CrossRefGoogle Scholar
  32. Tu Q-M, Fan L-Q, Pan F, Huang J-L, Gu Y, Lin J-M, Huang M-L, Huang Y-F, Wu J-H (2018) Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochim Acta 268:562–568CrossRefGoogle Scholar
  33. Vishnu N, Gopalakrishnan A, Badhulika S (2018) Impact of intrinsic iron on electrochemical oxidation of pencil graphite and its application as supercapacitors. Electrochim Acta 269:274–281CrossRefGoogle Scholar
  34. Wang H, Zhu C, Chao D, Yan Q, Fan H (2017) Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater 29:1702093CrossRefGoogle Scholar
  35. Wang F, Li G, Zhou Q, Zheng J, Yang C, Wang Q (2017a) One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors. Appl Surf Sci 425:180–187CrossRefGoogle Scholar
  36. Wang X, Zhao S-X, Dong L, Lu Q-L, Zhu J, Nan C-W (2017b) One-step synthesis of surface-enriched nickel cobalt sulfide nanoparticles on graphene for high-performance supercapacitors. Energy Storage Mater 6:180–187CrossRefGoogle Scholar
  37. Wu K, Du K, Hu G (2018a) A novel design concept for fabricating 3D graphene with the assistant of anti-solvent precipitated sulphates and its Li-ion storage properties. J Mater Chem A 6:3444–3453CrossRefGoogle Scholar
  38. Wu K, Liu D, Tang Y (2018b) In-situ single-step chemical synthesis of graphene-decorated CoFe2O4 composite with enhanced Li ion storage behaviors. Electrochim Acta 263:515–523CrossRefGoogle Scholar
  39. Xu Y, Zhou T, Cao X, Zhao W, Chang J, Zhu W, Guo W, Du W (2017) Low-cost synthesis and electrochemical characteristics of ternary Cu-Co sulfides for high performance full-cell asymmetric supercapacitors. Mater Res Bull 91:68–76CrossRefGoogle Scholar
  40. Xu D, Chao D, Wang H, Gong Y, Wang R, He B, Hu X, Fan HJ (2018) Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv Energy Mater 8:1702769CrossRefGoogle Scholar
  41. Yang W, Hou L, Xu X, Li Z, Ma X, Yang F, Li Y (2018) Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors. Carbon 130:325–332CrossRefGoogle Scholar
  42. Zhang N, Gao N, Fu C, Liu D, Li S, Jiang L, Zhou H, Kuang Y (2017a) Hierarchical porous carbon spheres/graphene composite for supercapacitor with both aqueous solution and ionic liquid. Electrochim Acta 235:340–347CrossRefGoogle Scholar
  43. Zhang Y, Liu H, Huang M, Zhang JM, Zhang W, Dong F, Zhang YX (2017b) Engineering ultrathin Co(OH)2 Nanosheets on dandelion-like CuCo2O4 microspheres for binder-free supercapacitors. ChemElectroChem 4:721–727CrossRefGoogle Scholar
  44. Zhang Y, Xu J, Zheng Y, Zhang Y, Hu X, Xu T (2017c) Construction of CuCo2O4@CuCo2O4 hierarchical nanowire arrays grown on Ni foam for high-performance supercapacitors. RSC Adv 7:3983–3991CrossRefGoogle Scholar
  45. Zhao F, Huang W, Zhou D (2018) Chemical bath deposition synthesis of nickel cobalt oxides/sulfides for high-performance supercapacitors electrode materials. J Alloys Compd 755:15–23CrossRefGoogle Scholar
  46. Zheng K, Zou X, Xie X, Lu C, Li S, Lu X (2018) Electrosynthesis of SiC derived porous carbon nanospheres for supercapacitors. Mater Lett 216:265–268CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Fangping Wang
    • 1
    • 2
    Email author
  • Jinfeng Zheng
    • 1
    • 2
  • Jing Ma
    • 1
    • 2
  • Kailing Zhou
    • 1
    • 2
  • Qizhao Wang
    • 1
    • 2
  1. 1.Key Laboratory of Eco-Environment-Related Polymer MaterialsMinistry of Education of ChinaLanzhuoChina
  2. 2.Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations