Advertisement

Influence of cerium content and heat treatment on Ce:YAG@glass wool nanostructures

  • Francesco Armetta
  • Chiara Defilippi
  • Cristina Giordano
  • Eugenio Caponetti
  • Lukasz Marciniak
  • Dariusz Hreniak
  • Maria Luisa SaladinoEmail author
Research Paper
  • 22 Downloads

Abstract

The paper reports the influence of cerium content and heat treatment on composition, structural features and optical properties of nanostructures constituted by a layer of Ce:YAG nanoparticles on glass wool (Ce:YAG@GW). The Ce:YAG@GW nanostructures were obtained embedding the glass wool (GW) in a gel-like precursor and calcining at 800 and 900 °C. Gel-like precursor of urea glass route (UGR) method has been used to prepare both nanostructures and Ce:YAG nanoparticles prepared as references. Structural properties were investigated by using X-ray diffraction (XRD) and infrared spectroscopy (IR). Results showed that the composition of the final products strongly depends both on the cerium content and temperature. Optical properties of best materials have been investigated in order to verify their suitability for lighting applications. Obtained results show relatively high quantum efficiency for Ce:YAG@GW treated at 800 °C comparing with the Ce:YAG nanoparticles obtained at the same temperature confirming the improved luminescence properties of the nanoparticles when they are applied on GW surface.

Graphical abstract

Keywords

Urea glass route YAG Glass wool Layer of nanoparticles Synthetic route 

Notes

Acknowledgements

D.H. acknowledges the Polish National Science Centre for the OPUS 11 2016/21/B/ST5/02385 project. M.L.S. thanks the University of Palermo for supporting this research through the CORI2017 (Bando per la concessione di contributi per l’avvio e lo sviluppo di collaborazioni dell’Ateneo 2017-Azione D).

Funding information

C.G. and C.D. acknowledge QMUL for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

11051_2019_4589_MOESM1_ESM.docx (2.5 mb)
ESM 1 (DOCX 2535 kb)

References

  1. Allison SW, Gillies GT, Rondinone AJ, Cates MR (2003) Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77 C. Nanotechnology 14(8):859–863CrossRefGoogle Scholar
  2. Armetta F, Hreniak D, Marciniak Ł, Caponetti E, Saladino ML (2019) Synthesis of yttrium aluminum garnet nanoparticles in confined environment III: cerium doping effect. Opt Mater 85:275–280CrossRefGoogle Scholar
  3. Armetta F, Saladino ML, Giordano C, Defilippi C, Marciniak Ł, Hreniak D, Caponetti E (2019) Non-conventional Ce: YAG nanostructures via urea complexes. Sci Rep 9:3368CrossRefGoogle Scholar
  4. Balci MH, Chen F, Cunbul AB, Svensen Ø, Akram MN, Chen X (2018) Comparative study of blue laser diode driven cerium-doped single crystal phosphors in application of high-power lighting and display technologies. Opt Rev 25(1):166–174CrossRefGoogle Scholar
  5. Bi F, Gai G, Dong X, Xiao SS, Wang J, Liu G, Zhao L, Wang L (2017) J Mater Sci Mater Electron 28:4498–4505CrossRefGoogle Scholar
  6. Chi YC, Huang YF, Wu TC, Tsai CT, Chen LY, Kuo HC, Lin GR (2017) Sci Rep 7 (1):art no 10469Google Scholar
  7. Dantelle G, Salaün M, Bruyère R, Kodjikian S, Ibanez A (2017) Luminescent coatings prepared from optimized YAG:Ce nanoparticles. Thin Solid Films 643:36–42CrossRefGoogle Scholar
  8. Dantelle G, Testemale D, Homeyer E, Cantarano A, Kodjikian S, Dujardin C, Hazemann J-L, Ibanez A (2018) A new solvothermal method for the synthesis of size-controlled YAG:Ce single-nanocrystals. RSC Adv 8(47):26857–26870CrossRefGoogle Scholar
  9. Dresler C, Saladino ML, Demirbag C, Caponetti E, Chillura Martino D, Alduina R (2017) Development of controlled release systems of biocides for the conservation of cultural heritage. Int Biodeterior Biodegradation 125:150–156CrossRefGoogle Scholar
  10. He X, Liu X, Li R, Yang B, Yu K, Zeng M, Yu R (2016) Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles. Sci Rep 6:22238CrossRefGoogle Scholar
  11. Hosseinifard M, Badiei A, Ahmadi K (2017) Synthesis and characterization of yttrium aluminum garnet nanostructures by cathodic electrodeposition method. Adv Powder Technol 28:411–418CrossRefGoogle Scholar
  12. Hu S, Zhang Y, Wang Z, Zhou G, Xue Z, Zhang H, Wang S (2018) Phase composition, microstructure and luminescent property evolutions in “light-scattering enhanced” Al2O3-Y3Al5O12: Ce3+ ceramic phosphors. J Eur Ceram Soc 38(9):3268–3278CrossRefGoogle Scholar
  13. Jamnani BD, Hosseini S, Shavandi A, Hassan MR (2016) Advances in materials science and engineering article ID 6014874Google Scholar
  14. Janda J (2017) The comparison of scintillation properties of YAP:Ce, YAG:Ce and ZnO:Ga powders as a potential substitution of LSC cocktail. J Radioanal Nucl Chem 314(2):573–582CrossRefGoogle Scholar
  15. Kamegawa Y, Ishiguro H, Seto H (2015) Enhanced photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in water purification. J Mater Chem A 3:2323–2330CrossRefGoogle Scholar
  16. Karmakar B (2016) Fundamentals of glass and glass nanocomposites in glass nanocomposites, synthesis, properties and applications, ed, Elsevier, AmsterdamCrossRefGoogle Scholar
  17. Kasuya R, Isobe T, Kuma H, Katano J (2005) Photoluminescence enhancement of PEG-modified YAG:Ce3+nanocrystal phosphor prepared by glycothermal method. J Phys Chem B 109(47):22126–22130CrossRefGoogle Scholar
  18. Katelnikovas A, Jüstel T, Uhlich D, J⊘rgensen J-E, Sakirzanovas S, Kareiva A (2008) Characterization of cerium-doped yttrium aluminium garnet nanopowders synthesized via sol-gel process. Chem Eng Commun 195(7):758–769CrossRefGoogle Scholar
  19. Kȩpiński L, Hreniak D, Strek W (2002) Microstructure and luminescence properties of nanocrystalline cerium silicates. J Alloys Compd 341(1):203–207CrossRefGoogle Scholar
  20. Kool A, Thakur P, Bagchi B, Amin Hoque N, Banerjee S, Da S (2017) Synthesis of nanocrystalline photoluminescent mullite using sacrificial cotton wool and filter paper templates. J Am Ceram Soc 100:4836–4847CrossRefGoogle Scholar
  21. Kostić S, Lazarević ZŽ, Radojević V, Milutinović A, Romčević M, Romčević NŽ, Valčić A (2015) Study of structural and optical properties of YAG and Nd:YAG single crystals. Mater Res Bull 63:80–87CrossRefGoogle Scholar
  22. Kwon SB, Choi SH, Yoo JH, Jeong SG, Song YH, Yoon DH (2018) Synthesis design of Y3Al5O12: Ce3+ phosphor for fabrication of ceramic converter in automotive application. Opt Mater 80:265–270CrossRefGoogle Scholar
  23. Li L, Wang S, Mu G, Yin X, Ou K, Yi L (2015) A novel violet/blue light-emitting device based on Ce2Si2O7. Sci Rep 5:16659CrossRefGoogle Scholar
  24. Lin YC, Karlsson M, Bettinelli M (2016) Inorganic phosphor materials for lighting. Top Curr Chem (Z) 374:21CrossRefGoogle Scholar
  25. Liu RS (2016) Quantum dots and their applications 2:1–523Google Scholar
  26. Lukowiak A, Wiglusz R, Maczka M, Gluchowski P, Strek W (2010) IR and Raman spectroscopy study of YAG nanoceramics. Chem Phys Lett 494:279–283CrossRefGoogle Scholar
  27. Lutterotti L, Gialanella S (1998) X-ray diffraction characterization of heavily deformed metallic specimens. Acta Mater 46:101–110CrossRefGoogle Scholar
  28. Panahibakhsh S, Jelvani S, Mollabashi M, Malekia MH (2015) Nanostructure formation on the surface of YAG:Nd crystal by ARF laser irradiation. J Appl Spectrosc 82(2):329–335CrossRefGoogle Scholar
  29. Park KW, Kang TW, Kim DH, Park JH, Choi HL, Kim JS (2017) Spectral variation of Y 3 Al 5 O 12 :Ce 3+ nanophosphors and their optical simulation. J Lumin 191:40–45CrossRefGoogle Scholar
  30. Reisfeld R, Patra A, Panczer G, Gaft M (1999) Spectroscopic properties of cerium in sol–gel glasses. Opt Mater 13(1):81–88CrossRefGoogle Scholar
  31. Revaux A, Dantelle G, George N, Seshadri R, Gacoin T, Boilot J (2011) A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films. Nanoscale 3:2015CrossRefGoogle Scholar
  32. Saladino ML, Caponetti E, Chillura Martino D, Enzo S, Ibba G (2008) Effect of the dopant selection (Er, Eu, Nd or Ce) and its quantity on the formation of yttrium aluminum garnet nanopowders. Opt Mater 31:261–267CrossRefGoogle Scholar
  33. Saladino ML, Chillura Martino D, Floriano MA, Hreniak D, Marciniak Ł, Stręk W, Caponetti E (2014) Ce:Y3Al5O12–Poly(methyl methacrylate) composite for white-light-emitting diodes. J Phys Chem C 118:9107–9113CrossRefGoogle Scholar
  34. Slack GA, Oliver D, Chrenk RM, Roberts S (1969) Phys Rev 3:177Google Scholar
  35. Song YH, Kwon SB, Jung MK, Park WK, Yoo JH, Lee CW, Kang BK, Yang WS, Yoon DH (2018) Fabrication design for a high-quality laser diode-based ceramic converter for a laser headlamp application. Ceram Int 44(1):1182–1186CrossRefGoogle Scholar
  36. Tanabe S (2006) Optical properties and local structure of rare-earth-doped amplifier for broadband telecommunication. J Alloys Compd 408–412:691–697Google Scholar
  37. Veith M, Mathur S, Kareiva A, Jilavi M, Zimmera M, Hucha V (1999) Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol–gel methods. J Mater Chem 9:3069–3079CrossRefGoogle Scholar
  38. Vorsthove M, Kynast U (2011) Efficiency issues in Ce3+ doped YAG nanocrystals. Mater Res Bull 46(11):1761–1765CrossRefGoogle Scholar
  39. Wang Z, Zou J, Li Y, Zhang C, Shi M, Yang B, Zhou H, Liu Y, Liu N (2017) The study of luminescence properties on Ce:YAG phosphor in glass co-sintered at different temperatures. J Mater Sci Mater Electron 28(22):16633–16638CrossRefGoogle Scholar
  40. Wiatrowska A, Keur W, Ronda C (2017) Single and multicomponent garnets nanoparticles – synthesis and luminescence. J Lumin 189:9–18CrossRefGoogle Scholar
  41. XiXian L, WangHe C, Fei S (2008) The development of silicate matrix phosphors with broad excitation band for phosphor-convered white LED. Chin Sci Bull 53(19):2923–2930Google Scholar
  42. Xu X, Li H, Zhuo Y, Li R, Tian P, Xiong D, Chen M (2018a) High refractive index coating of phosphor-in-glass for enhanced light extraction efficiency of white LEDs. J Mater Sci 53(2):1335–1345CrossRefGoogle Scholar
  43. Xu J, Liu B, Liu Z, Gong Y, Hu B, Wang J, Li H, Wang X, Du B (2018b) Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting. Opt Mater 75:508–512CrossRefGoogle Scholar
  44. Yan L, Li B, Song Y, Lv Z, Zheng X, Wu Q, Yang Y (2017) Optical temperature sensing using the multiphonon-assisted anti-Stokes-to-Stokes fluorescence intensity ratio. Opt Lett 42(19):3793–3795CrossRefGoogle Scholar
  45. Young RA (ed) (1993) The Rietveld method. University Press, OxfordGoogle Scholar
  46. Zhang J, Wang Y, Guo LP (2013) Up-conversion luminescence and near-infrared quantum cutting in Y6O5F8:RE3+ (RE = Yb, Er, and Ho) with controllable morphologies by hydrothermal synthesis. Dalton Trans 42:3542–3551CrossRefGoogle Scholar
  47. Zhang L, Sun B, Gu L, Bu W, Fu X, Sun R, Zhou T, Selim FA, Wong C, Chen H (2018) Enhanced light extraction of single-surface textured YAG:Ce transparent ceramics for high power white LEDs. Appl Surf Sci 455:425–432CrossRefGoogle Scholar
  48. Zheng F, Shuai M, Wang W, Li Y, Chen Y, Cheng L (2017) Microstructures and optical properties of 6 Li, Ce:YAG ceramics for thermal neutron detection. J Eur Ceram Soc 37(11):3603–3607CrossRefGoogle Scholar
  49. Zhu J, Wang JG, Lv FJ, Xiao SX, Nuckolls C, Li HX (2013) Synthesis and self-assembly of photonic materials from nanocrystalline titania sheets. J Am Chem Soc 135:4719–4721CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF and INSTM UdR-PalermoUniversità di PalermoPalermoItaly
  2. 2.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  3. 3.Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWrocławPoland

Personalised recommendations