Advertisement

Influence of solvent electron affinity on paramagnetic defects in hybrid Si/SiOx luminescent nanoparticles

  • Oleg I. GromovEmail author
  • Evgeny D. Feklichev
  • Georgy M. Zhidomirov
  • Alexey O. Rybaltovskii
  • Alexander P. Sviridov
  • Yuriy V. Grigoriev
  • Anatoly A. Ischenko
  • Victor N. Bagratashvili
  • Elena N. Golubeva
Research Paper
  • 32 Downloads

Abstract

Luminescence of 1-octadecene-coated silicon nanoparticles with 8 nm crystalline core in hexane and CCl4 colloidal solutions and its reversible photobleaching were examined. In agreement with previous reports, anti-correlation of luminescence intensity and the number of paramagnetic defects were found in hexane. Luminescence intensity is decreased by 75% during 30 min of 405 nm laser irradiation while the number of paramagnetic defects is increased by 65%. Paramagnetic defects were supposed to be silicon dangling bonds. In CCl4 colloidal solution, this correlation is lost: photobleaching is similar to hexane colloidal solution, while the number of paramagnetic defects is not changed during irradiation. Electron trapping and subsequent breaking of weak Si-Si bonds are proposed to be the reason of formation of silicon dangling bonds during irradiation. DFT calculation of geometry and g-tensor of Si-vacancy on the boundary of crystalline silicon core and oxide shell was performed. Formation of paramagnetic defects is supposed to be a by-process responsible only for a minor effect on luminescence intensity.

Keywords

Luminescent nanoparticles EPR spectroscopy Defects DFT calculations Silicon 

Notes

Acknowledgments

The authors are grateful to Prof. G.V. Fetisov for performing SAXS measurements. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University (Sadovnichy et al. 2013). The electron microscopy was performed using the equipment of the Shared Research Center “Structural diagnostics of materials” and partially supported by the Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS. O.I.G. and E.D.F. acknowledge (partial) support from M.V. Lomonosov Moscow State University Program of Development.

Funding information

The research is partially supported by the Russian Foundation for Basic Research (Grant No. 16-29-11741).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4575_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 27 kb)

References

  1. Arrigo A, Mazzaro R, Romano F, Bergamini G, Ceroni P (2016) Photoinduced electron-transfer quenching of luminescent silicon nanocrystals as a way to estimate the position of the conduction and valence bands by Marcus theory. Chem Mater 28:6664–6671.  https://doi.org/10.1021/acs.chemmater.6b02880 CrossRefGoogle Scholar
  2. Bagratashvili VN, Dorofeev SG, Ischenko AA, Kononov NN, Panchenko VY, Rybaltovskii AO, Sviridov AP, Senkov SN, Tsypina SI, Yusupov VI, Yuvchenko SA, Zimnyakov DA (2013) Effects of laser-induced quenching and restoration of photoluminescence in hybrid Si/SiO x nanoparticles. Laser Phys Lett 10:095901.  https://doi.org/10.1088/1612-2011/10/9/095901 CrossRefGoogle Scholar
  3. Bagratashvili V, Feklichev E, Rybaltovskiy A, Sviridov A, Shubnyy A, Tsypina S, Ischenko A (2018) Effects of electron tunneling in photophysics of quantum-sized luminescent nanosilicon. J Nanopart Res 20:1–10.  https://doi.org/10.1007/s11051-018-4138-1 CrossRefGoogle Scholar
  4. Brawand NP, Vörös M, Galli G (2015) Surface dangling bonds are a cause of B-type blinking in Si nanoparticles. Nanoscale 7:3737–3744.  https://doi.org/10.1039/C4NR06376G CrossRefGoogle Scholar
  5. Caplan PJ, Poindexter EH, Deal BE, Razouk RR (1979) ESR centers, interface states, and oxide fixed charge in thermally oxidized silicon wafers. J Appl Phys 50:5847–5854.  https://doi.org/10.1063/1.326732 CrossRefGoogle Scholar
  6. Carlos WE, Prokes SM (1995) Oxygen-associated defects near Si–SiO2 interfaces in porous Si and their role in photoluminescence. J Vac Sci Technol B Microelectron Nanom Struct 13:1653.  https://doi.org/10.1116/1.587873 CrossRefGoogle Scholar
  7. Chumakova NA, Vorobiev AK (2012) Simulation of rigid-limit and slow-motion EPR spectra for extraction of quantitative dynamic and orientational information. In: Kokorin AI (ed) Nitroxides - theory, experiment and applications [Internet]. InTech, Rijeka, pp 57–112.  https://doi.org/10.5772/74052 Google Scholar
  8. Dersch H, Stuke J, Beichler J (1981) Light-induced dangling bonds in hydrogenated amorphous silicon. Appl Phys Lett 38:456–458.  https://doi.org/10.1063/1.92402 CrossRefGoogle Scholar
  9. Dietmueller R, Stegner AR, Lechner R, Niesar S, Pereira RN, Brandt MS, Ebbers A, Trocha M, Wiggers H, Stutzmann M (2009) Light-induced charge transfer in hybrid composites of organic semiconductors and silicon nanocrystals. Appl Phys Lett 94:113301.  https://doi.org/10.1063/1.3086299 CrossRefGoogle Scholar
  10. Fujii M, Mimura A, Hayashi S, Yamamoto K, Urakawa C, Ohta H (2000) Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: an electron spin resonance study. J Appl Phys 87:1855–1857.  https://doi.org/10.1063/1.372103 CrossRefGoogle Scholar
  11. Ganchenkova MG, Oikkonen LE, Borodin VA, Nicolaysen S, Nieminen RM (2009) Vacancies and E-centers in silicon as multi-symmetry defects. Mater Sci Eng B 159–160:107–111.  https://doi.org/10.1016/j.mseb.2008.10.040 CrossRefGoogle Scholar
  12. Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev OI, van Tendeloo G, Moshchalkov VV (2008) Classification and control of the origin of photoluminescence from Si nanocrystals. Nat Nanotechnol 3:174–178.  https://doi.org/10.1038/nnano.2008.7 CrossRefGoogle Scholar
  13. Goñi AR, Muniz LR, Reparaz JS, Alonso MI, Garriga M, Lopeandia AF, Rodríguez-Viejo J, Arbiol J, Rurali R (2014) Using high pressure to unravel the mechanism of visible emission in amorphous Si/SiOx nanoparticles. Phys Rev B 89:045428.  https://doi.org/10.1103/PhysRevB.89.045428 CrossRefGoogle Scholar
  14. Grimme S, Brandenburg JG, Bannwarth C, Hansen A (2015) Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J Chem Phys 143:054107.  https://doi.org/10.1063/1.4927476 CrossRefGoogle Scholar
  15. Hadjisavvas G, Kelires PC (2004) Structure and energetics of Si nanocrystals embedded in a-SiO2. Phys Rev Lett 93:226104.  https://doi.org/10.1103/PhysRevLett.93.226104 CrossRefGoogle Scholar
  16. Hannah DC, Yang J, Podsiadlo P, Chan MKY, Demortière A, Gosztola DJ, Prakapenka VB, Schatz GC, Kortshagen U, Schaller RD (2012) On the origin of photoluminescence in silicon nanocrystals: pressure-dependent structural and optical studies. Nano Lett 12:4200–4205.  https://doi.org/10.1021/nl301787g CrossRefGoogle Scholar
  17. Helms CR, Poindexter EH (1994) The silicon-silicon dioxide system: its microstructure and imperfections. Rep Prog Phys 57:791–852.  https://doi.org/10.1088/0034-4885/57/8/002 CrossRefGoogle Scholar
  18. Hessel CM, Reid D, Panthani MG, Rasch MR, Goodfellow BW, Wei J, Fujii H, Akhavan V, Korgel BA (2012) Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem Mater 24:393–401.  https://doi.org/10.1021/cm2032866 CrossRefGoogle Scholar
  19. Hiller D, Jivanescu M, Stesmans A, Zacharias M (2010) Pb(0) centers at the Si-nanocrystal/SiO2 interface as the dominant photoluminescence quenching defect. J Appl Phys 107:084309.  https://doi.org/10.1063/1.3388176 CrossRefGoogle Scholar
  20. Iacovo S, Stesmans A (2014a) Multi-frequency electron spin resonance study of inherent Si dangling bond defects at the thermal (211)Si/SiO 2 interface. Phys Status Solidi 11:1589–1592.  https://doi.org/10.1002/pssc.201400071 CrossRefGoogle Scholar
  21. Iacovo S, Stesmans A (2014b) Inherent point defects at the thermal higher-Miller index (211)Si/SiO2 interface. Appl Phys Lett 105:262101.  https://doi.org/10.1063/1.4904413 CrossRefGoogle Scholar
  22. Ischenko A, Fetisov G, Aslalnov L (2014) Nanosilicon. CRC Press, Boca RatonCrossRefGoogle Scholar
  23. Jivanescu M, Stesmans A, Zacharias M (2008) Inherent paramagnetic defects in layered Si/SiO2 superstructures with Si nanocrystals. J Appl Phys 104:103518.  https://doi.org/10.1063/1.2966690 CrossRefGoogle Scholar
  24. Keunen K, Stesmans A, Afanas’ev VV (2011) Inherent Si dangling bond defects at the thermal (110)Si/SiO2 interface. Phys Rev B 84:085329.  https://doi.org/10.1103/PhysRevB.84.085329 CrossRefGoogle Scholar
  25. Kimmel A, Sushko P, Shluger A, Bersuker G (2009) Positive and negative oxygen vacancies in amorphous silica. In: ECS Transactions ECS, pp 3–17CrossRefGoogle Scholar
  26. Koropecki R, Arce R (2018) Effects of irradiation on porous silicon. In: Canham L (ed) Handbook of porous silicon. Springer International Publishing, Cham, pp 739–753CrossRefGoogle Scholar
  27. Kumar V (ed) (2007) Nanosilicon. Elsevier Ltd, AmsterdamGoogle Scholar
  28. Ledoux G, Gong J, Huisken F, Guillois O, Reynaud C (2002) Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement. Appl Phys Lett 80:4834–4836.  https://doi.org/10.1063/1.1485302 CrossRefGoogle Scholar
  29. Lee BG, Hiller D, Luo JW, Semonin OE, Beard MC, Zacharias M, Stradins P (2012) Strained interface defects in silicon nanocrystals. Adv Funct Mater 22:3223–3232.  https://doi.org/10.1002/adfm.201200572 CrossRefGoogle Scholar
  30. Mandal NP, Sharma A, Agarwal SC (2006) Improved stability of nanocrystalline porous silicon after coating with a polymer. J Appl Phys 100:024308.  https://doi.org/10.1063/1.2214620 CrossRefGoogle Scholar
  31. Mastronardi ML, Chen KK, Liao K, Casillas G, Ozin GA (2015) Size-dependent chemical reactivity of silicon nanocrystals with water and oxygen. J Phys Chem C 119:826–834.  https://doi.org/10.1021/jp510592j CrossRefGoogle Scholar
  32. Mazzaro R, Romano F, Ceroni P (2017) Long-lived luminescence of silicon nanocrystals: from principles to applications. Phys Chem Chem Phys 19:26507–26526.  https://doi.org/10.1039/C7CP05208A CrossRefGoogle Scholar
  33. Mochizuki Y, Mizuta M (1995) Role of dangling bond centers on radiative recombination processes in porous silicon. Appl Phys Lett 67:1396–1398.  https://doi.org/10.1063/1.114505 CrossRefGoogle Scholar
  34. Morigaki K, Hikita H, Ogihara C (2014) Light-induced defects in semiconductors. CRC Press, Boca RatonCrossRefGoogle Scholar
  35. Neese F (2018) Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci 8:e1327.  https://doi.org/10.1002/wcms.1327 CrossRefGoogle Scholar
  36. Ogihara C, Nomiyama T, Yamamoto H, Nakanishi K, Harada J, Yu X, Morigaki K (2006) Light-induced creation of defects related to low energy photoluminescence in hydrogenated amorphous silicon. J Non-Cryst Solids 352:1064–1067.  https://doi.org/10.1016/j.jnoncrysol.2005.11.094 CrossRefGoogle Scholar
  37. Ondič L, Kůsová K, Ziegler M, Fekete L, Gärtnerová V, Cháb V, Holý V, Cibulka O, Herynková K, Gallart M, Gilliot P, Hönerlage B, Pelant I (2014) A complex study of the fast blue luminescence of oxidized silicon nanocrystals: the role of the core. Nanoscale 6:3837–3845.  https://doi.org/10.1039/c3nr06454a CrossRefGoogle Scholar
  38. Otsuka M, Matsuoka T, Vlasenko LS, Vlasenko MP, Itoh KM (2013) Identification of photo-induced spin-triplet recombination centers situated at Si surfaces and Si/SiO2 interfaces. Appl Phys Lett 103:111601.  https://doi.org/10.1063/1.4820824 CrossRefGoogle Scholar
  39. Pacchioni G, Skuja L, Griscom DL (eds) (2000) Defects in SiO2 and related dielectrics : science and technology. NATO science series. Springer Science+Business Media, DordrechtGoogle Scholar
  40. Pankove JI, Berkeyheiser JE (1980) Light-induced radiative recombination centers in hydrogenated amorphous silicon. Appl Phys Lett 37:705–706.  https://doi.org/10.1063/1.92052 CrossRefGoogle Scholar
  41. Peng W-T, Fales BS, Shu Y, Levine BG (2018) Dynamics of recombination via conical intersection in a semiconductor nanocrystal. Chem Sci 9:681–687.  https://doi.org/10.1039/C7SC04221C CrossRefGoogle Scholar
  42. Pfanner G, Freysoldt C, Neugebauer J, Gerstmann U (2012) Ab initio EPR parameters for dangling-bond defect complexes in silicon: effect of Jahn-Teller distortion. Phys Rev B 85:195202.  https://doi.org/10.1103/PhysRevB.85.195202 CrossRefGoogle Scholar
  43. Poindexter EH, Caplan PJ, Deal BE, Razouk RR (1981) Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers. J Appl Phys 52:879–884.  https://doi.org/10.1063/1.328771 CrossRefGoogle Scholar
  44. Prokes SM, Carlos WE (1995) Oxygen defect center red room temperature photoluminescence from freshly etched and oxidized porous silicon. J Appl Phys 78:2671–2674.  https://doi.org/10.1063/1.360716 CrossRefGoogle Scholar
  45. Prokes SM, Carlos WE, Bermudez VM (1992) Luminescence cycling and defect density measurements in porous silicon: evidence for hydride based model. Appl Phys Lett 61:1447–1449.  https://doi.org/10.1063/1.107565 CrossRefGoogle Scholar
  46. Rybaltovskii AO, Zavorotnyi YS, Ishchenko AA, Parshutkin AE, Radtsig VA, Sviridov AP, Feklichev ED, Bagratashvili VN (2018) Effect of Electron-acceptor compounds on the laser burning of photoluminescence of hybrid Si/SiOx silicon nanoparticles. Nanotechnologies Russ 13:141–151.  https://doi.org/10.1134/S199507801802009X CrossRefGoogle Scholar
  47. Rybaltovskiy AO, Ischenko AA, Zavorotny YS, Garshev AV, Dorofeev SG, Kononov NN, Minaev NV, Minaeva SA, Sviridov AP, Timashev PS, Khodos II, Yusupov VI, Lazov MA, Panchenko VY, Bagratashvili VN (2015) Synthesis of photoluminescent Si/SiO x core/shell nanoparticles by thermal disproportionation of SiO: structural and spectral characterization. J Mater Sci 50:2247–2256.  https://doi.org/10.1007/s10853-014-8787-x CrossRefGoogle Scholar
  48. Sadovnichy V, Tikhonravov A, Voevodin V, Opanasenko V (2013) “Lomonosov”: supercomputing at Moscow State University. In: Vetter JS (ed) Contemporary high performance computing: from Petascale toward Exascale. CRC Press, Boca Raton, pp 283–307Google Scholar
  49. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675.  https://doi.org/10.1038/nmeth.2089 CrossRefGoogle Scholar
  50. Shu Y, Levine BG (2015) Nonradiative recombination via conical intersections arising at defects on the oxidized silicon surface. J Phys Chem C 119:1737–1747.  https://doi.org/10.1021/jp5114202 CrossRefGoogle Scholar
  51. Shu Y, Levine BG (2016) First-principles study of nonradiative recombination in silicon nanocrystals: the role of surface silanol. J Phys Chem C 120:23246–23253.  https://doi.org/10.1021/acs.jpcc.6b06785 CrossRefGoogle Scholar
  52. Shu Y, Fales BS, Levine BG (2015a) Defect-induced conical intersections promote nonradiative recombination. Nano Lett 15:6247–6253.  https://doi.org/10.1021/acs.nanolett.5b02848 CrossRefGoogle Scholar
  53. Shu Y, Kortshagen UR, Levine BG, Anthony RJ (2015b) Surface structure and silicon nanocrystal photoluminescence: the role of hypervalent silyl groups. J Phys Chem C 119:26683–26691.  https://doi.org/10.1021/acs.jpcc.5b08578 CrossRefGoogle Scholar
  54. Stesmans A, Afanas’ev VV (1998) Electron spin resonance features of interface defects in thermal (100)Si/SiO2. J Appl Phys 83:2449–2457.  https://doi.org/10.1063/1.367005 CrossRefGoogle Scholar
  55. Stesmans A, Nouwen B, Afanas’ev VV (1998) Pb1 interface defect in thermal (100)Si/SiO2: 29Si hyperfine interaction. Phys Rev B 58:15801–15809.  https://doi.org/10.1103/PhysRevB.58.15801 CrossRefGoogle Scholar
  56. Stesmans A, Jivanescu M, Godefroo S, Zacharias M (2008) Paramagnetic point defects at SiO2/nanocrystalline Si interfaces. Appl Phys Lett 93:023123.  https://doi.org/10.1063/1.2952276 CrossRefGoogle Scholar
  57. Stutzmann M, Brandt MS, Bayerl MW (2000) Spin-dependent processes in amorphous and microcrystalline silicon: a survey. J Non-Cryst Solids 266–269:1–22.  https://doi.org/10.1016/S0022-3093(99)00871-6 CrossRefGoogle Scholar
  58. Umeda T, Yamasaki S, Isoya J, Tanaka K (1999) Electron-spin-resonance center of dangling bonds in undoped a-Si:H. Phys Rev B 59:4849–4857.  https://doi.org/10.1103/PhysRevB.59.4849 CrossRefGoogle Scholar
  59. Umeda T, Hagiwara S, Katagiri M, Mizuochi N, Isoya J (2006) A web-based database for EPR centers in semiconductors. Phys B Condens Matter 376–377:249–252.  https://doi.org/10.1016/j.physb.2005.12.065 CrossRefGoogle Scholar
  60. von Bardeleben HJ, Ortega C, Grosman A, Morazzani V, Siejka J, Stievenard D (1993) Defect and structure analysis of n+−, p+− and p-type porous silicon by the electron paramagnetic resonance technique. J Lumin 57:301–313.  https://doi.org/10.1016/0022-2313(93)90148-G CrossRefGoogle Scholar
  61. Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95:525–532.  https://doi.org/10.1021/j100155a009 CrossRefGoogle Scholar
  62. Watkins GD (1986) The lattice vacancy in silicon. In: Pantelides ST (ed) Deep centers in semiconductors. Gordon and Breach, New York, p 147Google Scholar
  63. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305.  https://doi.org/10.1039/b508541a CrossRefGoogle Scholar
  64. Wright AF, Wixom RR (2008) Density-functional-theory calculations for silicon vacancy migration. J Appl Phys 103:083517.  https://doi.org/10.1063/1.2906342 CrossRefGoogle Scholar
  65. Yang J, Liptak R, Rowe D, Wu J, Casey J, Witker D, Campbell SA, Kortshagen U (2014) UV and air stability of high-efficiency photoluminescent silicon nanocrystals. Appl Surf Sci 323:54–58.  https://doi.org/10.1016/j.apsusc.2014.08.027 CrossRefGoogle Scholar
  66. Yokomichi H, Takakura H, Kondo M (1993) Electron spin resonance centers and light-induced effects in porous silicon. Jpn J Appl Phys 32:L365–L367.  https://doi.org/10.1143/JJAP.32.L365 CrossRefGoogle Scholar
  67. Yu Y, Fan G, Fermi A, Mazzaro R, Morandi V, Ceroni P, Smilgies DM, Korgel BA (2017) Size-dependent photoluminescence efficiency of silicon nanocrystal quantum dots. J Phys Chem C 121:23240–23248.  https://doi.org/10.1021/acs.jpcc.7b08054 CrossRefGoogle Scholar
  68. Zheng J, Xu X, Truhlar DG (2011) Minimally augmented Karlsruhe basis sets. Theor Chem Accounts 128:295–305.  https://doi.org/10.1007/s00214-010-0846-z CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Oleg I. Gromov
    • 1
    Email author
  • Evgeny D. Feklichev
    • 1
  • Georgy M. Zhidomirov
    • 1
    • 2
  • Alexey O. Rybaltovskii
    • 3
  • Alexander P. Sviridov
    • 4
  • Yuriy V. Grigoriev
    • 4
  • Anatoly A. Ischenko
    • 5
  • Victor N. Bagratashvili
    • 1
    • 4
  • Elena N. Golubeva
    • 1
  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia
  2. 2.Boreskov Institute of Catalysis, SO RANNovosibirskRussia
  3. 3.Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of SciencesMoscowRussia
  5. 5.Institute of Fine Chemical Technologies after the name of M.V. LomonosovMIREA-Russian Technological UniversityMoscowRussia

Personalised recommendations