A molecular dynamics study: structural and thermal evolution of 147 atom ComAun nanoalloys

  • Haydar ArslanEmail author
  • Ali Kemal Garip
  • Songül Taran
Research Paper


In this study, the classical molecular dynamics simulations in canonical ensemble conditions (NVT) were used to investigate the dynamical properties of bimetallic Co–Au nanoalloy clusters with the interatomic interactions modeled by Gupta many-body potential. Global optimizations were performed using basin-hopping algorithm for all compositions of 147 atom Co–Au bimetallic clusters. A structure based on icosahedron was obtained for the majority of the compositions. Structural analysis results showed that lower surface and cohesive energy of Au atoms give rise to Au atoms on the surface sites preferably. The global minimum structures were taken as the initial configurations for MD simulations. We obtained caloric curves and also Lindemann parameters to investigate melting transitions. In general, the melting temperatures were fluctuated around 675 K for Au-rich compositions and 750 K for Co-rich compositions.


Au-Co nanoalloys Structural stability Melting dynamics Modeling and simulation 


Funding information

Support was from Bülent Ecevit University Scientific Research Projects Coordinatorship foundation with the project code 2016-22794455-02.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ackland GJ, Jones AP (2006) Applications of local crystal structure measures in experiment and simulation. Phys Rev B 73:054104. CrossRefGoogle Scholar
  2. Aghajani M, Javad Hashemifar S, Akbarzadeh H (2014) First-principles insights into interaction of au with small Co clusters. Phys E Low-Dimensional Syst Nanostructures 62:64–70. CrossRefGoogle Scholar
  3. Akbarzadeh H, Abbaspour M (2017) Different morphologies of aluminum nanoclusters: effect of pressure on solid-liquid phase transition of the nanoclusters using molecular dynamics simulations. J Mol Liq 230:20–23. CrossRefGoogle Scholar
  4. Akbarzadeh H, Abbaspour M, Mehrjouei E (2017a) Competition between stability of icosahedral and cuboctahedral morphologies in bimetallic nanoalloys. Phys Chem Chem Phys 19:14659–14670. CrossRefGoogle Scholar
  5. Akbarzadeh H, Mehrjouei E, Ramezanzadeh S, Izanloo C (2017b) Ni-Co bimetallic nanoparticles with core-shell, alloyed, and Janus structures explored by MD simulation. J Mol Liq 248:1078–1095. CrossRefGoogle Scholar
  6. Akbarzadeh H, Abbaspour M, Mehrjouei E (2018) Effect of systematic addition of the third component on the melting characteristics and structural evolution of binary alloy nanoclusters. J Mol Liq 249:412–419. CrossRefGoogle Scholar
  7. Arslan H (2008) Structures and energetic of palladium-cobalt binary clusters. Int J Mod Phys C 19:1243–1255. CrossRefGoogle Scholar
  8. Arslan H, Garip AK, Johnston RL (2015) Theoretical study of the structures and chemical ordering of cobalt–palladium nanoclusters. Phys Chem Chem Phys 17:28311–28321. CrossRefGoogle Scholar
  9. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423. CrossRefGoogle Scholar
  10. Bao Y, Krishnan KM (2005) Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications. J Magn Magn Mater 293:15–19CrossRefGoogle Scholar
  11. Bao Y, Calderon H, Krishnan KM (2007) Synthesis and characterization of magnetic-optical Co-Au core-shell nanoparticles. J Phys Chem C 111:1941–1944. CrossRefGoogle Scholar
  12. Bhattarai N, Casillas G, Khanal S, et al (2013) Structure and composition of Au/Co magneto-plasmonic nanoparticles. MRS Commun 3:177–183. CrossRefGoogle Scholar
  13. Billas IM, Châtelain A, de Heer WA (1994) Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265:1682–1684. CrossRefGoogle Scholar
  14. Bochicchio D, Ferrando R (2013) Morphological instability of core-shell metallic nanoparticles. Phys Rev B - Condens Matter Mater Phys 87:1–13. CrossRefGoogle Scholar
  15. Bondi JF, Misra R, Ke X, et al (2010) Optimized synthesis and magnetic properties of intermetallic Au 3Fe1-x, Au3Co1-x, and Au 3Ni1-x nanoparticles. Chem Mater 22:3988–3994. CrossRefGoogle Scholar
  16. Borel JP (1981) Thermodynamical size effect and the structure of metallic clusters. Surf Sci 106:1–9. CrossRefGoogle Scholar
  17. Chen F, Li ZY, Johnston RL (2011) Surface reconstruction precursor to melting in Au309 clusters. AIP Adv 1:32105. CrossRefGoogle Scholar
  18. Cheng D, Huang S, Wang W (2006) Thermal behavior of core-shell and three-shell layered clusters: melting of Cu1 Au54 and Cu12 Au43. Phys Rev B - Condens Matter Mater Phys 74:1–11. CrossRefGoogle Scholar
  19. Cheng D, Wang W, Huang S (2008) Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters. Phys Chem Chem Phys 10:2513–2518. CrossRefGoogle Scholar
  20. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668. CrossRefGoogle Scholar
  21. Cho SJ, Kauzlarich SM, Olamit J, Liu K, Grandjean F, Rebbouh L, Long GJ (2004) Characterization and magnetic properties of core/shell structured Fe/Au nanoparticles. J Appl Phys 95:6804–6806. CrossRefGoogle Scholar
  22. Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22–33. CrossRefGoogle Scholar
  23. Cushing B (2004) Synthesis and magnetic properties of Au-coated amorphous Fe20Ni80 nanoparticles. J Phys Chem Solids 65:825–829. CrossRefGoogle Scholar
  24. Doye JPK, Wales DJ (1997) Structural consequences of the range of the interatomic potential a menagerie of clusters. J Chem Soc Faraday Trans 93:4233–4243. CrossRefGoogle Scholar
  25. Dupuis V, Khadra G, Hillion A, Tamion A, Tuaillon-Combes J, Bardotti L, Tournus F (2015) Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition. Phys Chem Chem Phys 17:27996–28004. CrossRefGoogle Scholar
  26. Faken D, Jonsson H (1994) Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci 2:279–286CrossRefGoogle Scholar
  27. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. CrossRefGoogle Scholar
  28. Garip AK (2018) A molecular dynamics study: structures and thermal stability of Pd m Pt (13- m ) Ag 42 ternary nanoalloys. Int J Mod Phys C S0129183118500845. doi: CrossRefGoogle Scholar
  29. Gonzalez RI, Garcia G, Ramirez R, et al (2011) Temperature-dependent properties of 147- and 309-atom iron-gold nanoclusters. Phys Rev B - Condens Matter Mater Phys 83:. doi:
  30. Goyhenex C, Bulou H, Deville JP, Tréglia G (1999) Pt/Co (0001) superstructures in the submonolayer range: a tight-binding quenched-molecular-dynamics study. Phys Rev B 60:2781–2788. CrossRefGoogle Scholar
  31. Harb M, Rabilloud F, Simon D (2010) Structural, electronic, magnetic and optical properties of icosahedral silver-nickel nanoclusters. Phys Chem Chem Phys 12:4246–4254. CrossRefGoogle Scholar
  32. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963. CrossRefGoogle Scholar
  33. Kayal S, Ramanujan RV (2010) Anti-cancer drug loaded iron–gold core–shell nanoparticles (Fe@Au) for magnetic drug targeting. J Nanosci Nanotechnol 10:5527–5539. CrossRefGoogle Scholar
  34. Kong Y, Kong LT, Liu BX (2006) First-principles calculations of the structural stability and magnetic property of the metastable phases in the equilibrium immiscible Co-Au system. J Phys Condens Matter 18:4345–4353. Google Scholar
  35. Lee MS, Chacko S, Kanhere DG (2005a) First-principles investigation of finite-temperature behavior in small sodium clusters. J Chem Phys 123:164310. CrossRefGoogle Scholar
  36. Lee W, Kim MG, Choi J, Park JI, Ko SJ, Oh SJ, Cheon J (2005b) Redox - transmetalation process as a generalized synthetic strategy for core - shell magnetic nanoparticles. J Am Chem Soc 127:16090–16097. CrossRefGoogle Scholar
  37. Li M, Cheng D (2013) Molecular dynamics simulation of the melting behavior of crown-jewel structured Au-Pd nanoalloys. J Phys Chem C 117:18746–18751. CrossRefGoogle Scholar
  38. Lin J, Zhou W, Kumbhar A, Wiemann J, Fang J, Carpenter EE, O'Connor CJ (2001) Gold-coated Iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159:26–31. CrossRefGoogle Scholar
  39. Löwen H (1994) Melting, freezing and colloidal suspensions. Phys Rep 237:249–324CrossRefGoogle Scholar
  40. Marbella LE, Andolina CM, Smith AM, et al (2014) Gold-cobalt nanoparticle alloys exhibiting tunable compositions, near-infrared emission, and high T2 relaxivity. Adv Funct Mater 24:6532–6539. CrossRefGoogle Scholar
  41. Mayoral A, Mejía-Rosales S, Mariscal MM, Pérez-Tijerina E, José-Yacamán M (2010) The Co-Au interface in bimetallic nanoparticles: a high resolution STEM study. Nanoscale 2:2647–2651. CrossRefGoogle Scholar
  42. Mayoral A, Llamosa D, Huttel Y (2015) A novel Co@Au structure formed in bimetallic core@shell nanoparticles. Chem Commun 51:8442–8445. CrossRefGoogle Scholar
  43. Molayem M, Grigoryan VG, Springborg M (2011) Theoretical determination of the most stable structures of Ni m Ag n bimetallic nanoalloys. J Phys Chem C 115:7179–7192. CrossRefGoogle Scholar
  44. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688–2720CrossRefGoogle Scholar
  45. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557. CrossRefGoogle Scholar
  46. Noya EG, Doye JPK, Wales DJ, Aguado A (2007) Geometric magic numbers of sodium clusters: interpretation of the melting behaviour. Eur Phys J D 43:57–60. CrossRefGoogle Scholar
  47. Palomares-Baez JP, Panizon E, Ferrando R (2017) Nanoscale effects on phase separation. Nano Lett 17(9):5394–5401. CrossRefGoogle Scholar
  48. Park J-I, Cheon J (2001) Synthesis of “ solid solution ” and “core-shell” type cobalt - platinum magnetic nanoparticles via transmetalation reactions. J Am Chem Soc 123:5743–5746. CrossRefGoogle Scholar
  49. Park JI, Kim MG, Jun YW et al (2004) Characterization of superpararnagnetic “core-shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys. J Am Chem Soc 126:9072–9078. CrossRefGoogle Scholar
  50. Pittaway F, Paz-Borbón LO, Johnston RL, Arslan H, Ferrando R, Mottet C, Barcaro G, Fortunelli A (2009) Theoretical studies of palladium-gold nanoclusters: Pd-Au clusters with up to 50 atoms. J Phys Chem C 113:9141–9152. CrossRefGoogle Scholar
  51. Rapallo A, Oviedo O, Luduen M et al (2012) Thermal properties of Co / Au nanoalloys and comparison of Di ff erent computer simulation techniques. J Phys Chem C 116:17210–17218. CrossRefGoogle Scholar
  52. Rives S, Catherinot A, Dumas-Bouchiat F, Champeaux C, Videcoq A, Ferrando R (2008) Growth of Co isolated clusters in the gas phase: experiment and molecular dynamics simulations. Phys Rev B 77:85407. CrossRefGoogle Scholar
  53. Sargolzaei M, Opahle I, Richter M (2006) Spin and orbital magnetism of Au 3 Co: Density functional calculations. In: Physica Status Solidi (B) Basic Research. pp 286–289CrossRefGoogle Scholar
  54. Schiøtz J, Vegge T, Di Tolla F, Jacobsen KW (1999) Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B 60:11971–11983. CrossRefGoogle Scholar
  55. Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnell MV, Nishimura DG, Dai H (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5:971–976. CrossRefGoogle Scholar
  56. Shibuta Y, Suzuki T (2007) Melting and nucleation of iron nanoparticles: a molecular dynamics study. Chem Phys Lett 445:265–270. CrossRefGoogle Scholar
  57. Storhoff JJ, Mirkin CA (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862. CrossRefGoogle Scholar
  58. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mater Sci Eng 18:015012. CrossRefGoogle Scholar
  59. Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 20:45021–45015. CrossRefGoogle Scholar
  60. Subbaraman R, Sankaranarayanan SKRS (2011) Effect of Ag addition on the thermal characteristics and structural evolution of Ag-Cu-Ni ternary alloy nanoclusters: atomistic simulation study. Phys Rev B - Condens Matter Mater Phys 84:1–16. CrossRefGoogle Scholar
  61. Vargas A, Santarossa G, Iannuzzi M, Baiker A (2009) Fluxionality of gold nanoparticles investigated by born-Oppenheimer molecular dynamics. Phys Rev B - Condens Matter Mater Phys 80:. doi:
  62. Vasquez Y, Luo Z, Schaak RE (2008) Low-temperature solution synthesis of the non-equilibrium ordered intermetallic compounds Au3Fe, Au3Co, and Au3Ni as nanocrystals. J Am Chem Soc 130:11866–11867. CrossRefGoogle Scholar
  63. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103. CrossRefGoogle Scholar
  64. Wales DJ, Scheraga HA (1999) Global optimization of clusters, crystals, and biomolecules. Science 285:1368–1372. CrossRefGoogle Scholar
  65. Wen YH, Zhang Y, Zheng JC, Zhu ZZ, Sun SG (2009) Orientation-dependent structural transition and melting of Au nanowires. J Phys Chem C 113:20611–20617. CrossRefGoogle Scholar
  66. Wen Y-H, Huang R, Zeng X-M, Shao GF, Sun SG (2014) Tetrahexahedral Pt–Pd alloy nanocatalysts with high-index facets: an atomistic perspective on thermodynamic and shape stabilities. J Mater Chem A 2:1375–1382. CrossRefGoogle Scholar
  67. Xu YH, Wang JP (2008) Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation. Adv Mater 20:994–999. CrossRefGoogle Scholar
  68. Yano K, Nandwana V, Chaubey GS, et al (2009) Synthesis and characterization of magnetic FePt / Au core / shell nanoparticles. 13088–13091Google Scholar
  69. Zhou Z-Y, Tian N, Li J-T, Broadwell I, Sun SG (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40:4167–4185CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsZonguldak Bulent Ecevit UniversityZonguldakTurkey
  2. 2.Department of PhysicsDuzce UniversityDuzceTurkey

Personalised recommendations