Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries

  • Hao-Ran Wang
  • Wen-Jun Cai
  • Yong-Gang Yang
  • Yi LiEmail author
Research Paper


The high demands on lithium-ion batteries (LIBs) have increased concern about novel carbon nanomaterials with high capacity and cycling stability. Herein, twisted carbonaceous nanoribbons with high BET specific surface area of 1413 m2 g−1 were successfully synthesized using twisted 4, 4′-biphenylene bridged polybissilsesquioxane tubular nanoribbons as the starting material. Electrochemical measurement showed that the carbonaceous nanoribbon electrode not only delivered a high specific capacity of 921.1 mAh g−1 after 250 cycles at a current density of 0.1 A g−1, but also exhibited superior cycling stability and excellent rating capability. The work presents a facile way to design and fabricate good anode candidate for LIBs.


Amorphous materials Nanostructures Sol-gel chemistry Energy storage Pore architecture 


Funding information

This work was supported by the National Natural Science Foundation of China (No. 21574095 and 51473106), and the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abbas S, Ali S, Niaz N, Ali N, Ahmed R, Ahmad N (2014) Superior electrochemical performance of mesoporous Fe3O4/CNT nanocomposites as anode material for lithium ion batteries. J Alloys Compd 611:260–266CrossRefGoogle Scholar
  2. Armand M, Tarascon J (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  3. Bruce P, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  4. Chan C, Ruffo R, Hong S, Huggins R, Cui Y (2009) Structural and electrochemical study of the reaction of lithium with silicon nanowires. J Power Sources 189:34–39CrossRefGoogle Scholar
  5. Cheng J, Wang B, Park CM, Wu Y, Huang H, Nie F (2013) CNT@Fe3O4@C coaxial nanocables: one-pot, additive-free synthesis and remarkable lithium storage behavior. Chem Eur J 19:9866–9874CrossRefGoogle Scholar
  6. Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014) Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111CrossRefGoogle Scholar
  7. Chen X, Yang S, Motojima S, Ichihara M (2005) Morphology and microstructure of twisting nano-ribbons prepared using sputter-coated Fe-base alloy catalysts on glass substrates. Mater Lett 59:854–858CrossRefGoogle Scholar
  8. Chen Z, Cao Y, Qian J, Ai X, Yang H (2010) Antimony-coated SiC nanoparticles as stable and high-capacity anode materials for Li-ion batteries. J Phys Chem C 114:15196–15201CrossRefGoogle Scholar
  9. Dahn J, Zheng T, Liu Y, Xue J (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–593CrossRefGoogle Scholar
  10. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686CrossRefGoogle Scholar
  11. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397CrossRefGoogle Scholar
  12. Jia S, Song T, Zhao B, Zhai Q, Gao Y (2014) Dealloyed Fe3O4 octahedra as anode material for lithium-ion batteries with stable and high electrochemical performance. J Alloys Compd 617:787–791CrossRefGoogle Scholar
  13. Kim B, Uono H, Satou T, Fuse T, Ishihara T, Ue M, Senna M (2005) Cyclic properties of Si-cu/carbon nanocomposite anodes for Li-ion secondary batteries. J Electrochem Soc 152:A523–A526CrossRefGoogle Scholar
  14. Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon J (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627–A634CrossRefGoogle Scholar
  15. Lee SH, Sridhar V, Jung JH, Karthikeyan K, Lee YS, Mukherjee R, Koratkar N, Oh IK (2013) Graphene-nanotube-iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7:4242–4251CrossRefGoogle Scholar
  16. Li H, Li B, Chen Y, Zhang M, Wang S, Li Y, Yang Y (2009) Preparation of chiral 4,4 '-biphenylene-silica nanoribbons. Chin J Chem 27:1860–1862CrossRefGoogle Scholar
  17. Liu H, Li Z, Liang Y, Fu R, Wu D (2015) Facile synthesis of MnO multi-core@nitrogen-doped carbon shell nanoparticles for high performance lithium-ion battery anodes. Carbon 84:419–425CrossRefGoogle Scholar
  18. Liu J, Liu XW (2012) Two-dimensional nanoarchitectures for lithium storage. Adv Mater 24:4097–4111CrossRefGoogle Scholar
  19. Liu S, Duan Y, Feng X, Yang J, Che S (2013) Synthesis of enantiopure carbonaceous nanotubes with optical activity. Angew Chem Int Ed 52:6858–6862CrossRefGoogle Scholar
  20. Liu Y, Huang K, Luo H, Li H, Qi X, Zhong J (2014) Nitrogen-doped graphene-Fe3O4 architecture as anode material for improved Li-ion storage. RSC Adv 4:17653–17659CrossRefGoogle Scholar
  21. Reddy M, Ryu S, Shanmugharaj A (2016) Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries. Nanoscale 8:471–482CrossRefGoogle Scholar
  22. Roberts A, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 43:4341–4356CrossRefGoogle Scholar
  23. Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264:556–558CrossRefGoogle Scholar
  24. Shao C, Zhang F, Li B, Li Y, Wu QH, Yang Y (2017) Helical mesoporous carbon nanoribbons as high performance lithium ion battery anode materials. J Taiwan Inst Chem Eng 80:434–438CrossRefGoogle Scholar
  25. Sun H, Wang Q, Geng H, Li B, Li Y, Wu QH, Fan J, Yang Y (2016) Fabrication of chiral mesoporous carbonaceous nanofibers and their electrochemical energy storage. Electrochim Acta 213:752–760CrossRefGoogle Scholar
  26. Suzuki M, Yumoto M, Kimura M, Shirai H, Hanabusa K (2004) New low-molecular-mass gelators based on L-lysine: amphiphilic gelators and water-soluble organogelators. Helv Chim Acta 87:1–10CrossRefGoogle Scholar
  27. Wang C, Li Y, Ostrikov K, Yang Y, Zhang W (2015a) Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries. J Alloys Compd 646:966–972CrossRefGoogle Scholar
  28. Wang F, Song R, Song H, Chen X, Zhou J, Ma Z, Li M, Lei Q (2015b) Simple synthesis of novel hierarchical porous carbon microspheres and their application to rechargeable lithium-ion batteries. Carbon 81:314–321CrossRefGoogle Scholar
  29. Wang HG, Wu Z, Meng FL, Ma DL, Huang XL, Wang LM, Zhang XB (2013a) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem 6:56–60CrossRefGoogle Scholar
  30. Wang K, Li Z, Wang Y, Liu H, Chen J, Holmes J, Zhou H (2010) Carbon nanocages with nanographene shell for high-rate lithium ion batteries. J Mater Chem 20:9748–9753CrossRefGoogle Scholar
  31. Wang Q, Chen H, Li B, Li Y, Yang Y (2014) Single-handed helical carbonaceous bundles prepared using a chiral polybissilsesquioxane. Mater Lett 128:279–283CrossRefGoogle Scholar
  32. Wang SX, Yang L, Stubbs L, Li X, He C (2013b) Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5:12275–12282CrossRefGoogle Scholar
  33. Wang W, Sun Y, Liu B, Wang S, Cao M (2015c) Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 91:56–65CrossRefGoogle Scholar
  34. Wu X, Ji S, Li Y, Li B, Zhu X, Hanabusa K, Yang Y (2009a) Helical transfer through nonlocal interactions. J Am Chem Soc 131:5986–5993CrossRefGoogle Scholar
  35. Wu Y, Wei Y, Wang J, Jiang K, Fan S (2013) Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries. Nano Lett 13:818–823CrossRefGoogle Scholar
  36. Wu Z, Pang J, Lu Y (2009b) Synthesis of highly-ordered mesoporous carbon/silica nanocomposites and derivative hierarchically mesoporous carbon from a phenyl-bridged organosiloxane. Nanoscale 1:245–249CrossRefGoogle Scholar
  37. Xing W, Bai P, Li Z, Yu R, Yan Z, Lu G, Lu L (2006) Synthesis of ordered nanoporous carbon and its application in Li-ion battery. Electrochim Acta 51:4626–4633CrossRefGoogle Scholar
  38. Xin S, Guo YG, Wan LJ (2012) Nanocarbon networks for advanced rechargeable lithium batteries. Acc Chem Res 45:1759–1769CrossRefGoogle Scholar
  39. Yang X, Wei C, Sun C, Li X, Chen Y (2017) High performance anode of lithium-ion batteries derived from an advanced carbonaceous porous network. J Alloys Compd 693:777–781CrossRefGoogle Scholar
  40. Yang Y, Suzuki M, Owa S, Shirai H, Hanabusa K (2007) Control of mesoporous silica nanostructures and pore-architectures using a thickener and a gelator. J Am Chem Soc 129:581–587CrossRefGoogle Scholar
  41. Yan Y, Tang H, Wu F, Xie Z, Xu S, Qu D, Wang R, Wu F, Pan M, Qu D (2017) Facile synthesis of Fe2O3@graphite nanoparticle composite as the anode for Lithium ion batteries with high cyclic stability. Electrochim Acta 253:104–113CrossRefGoogle Scholar
  42. Yi J, Li X, Hu S, Li W, Zhou L, Xu M, Lei J, Hao L (2011) Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery. J Power Sources 196:6670–6675CrossRefGoogle Scholar
  43. Zhang C, Li Y, Li B, Yang Y (2013) Preparation of single-handed helical carbon/silica and carbonaceous nanotubes by using 4,4 '-biphenylene-bridged polybissilsesquioxane. Chem Asian J 8:2714–2720CrossRefGoogle Scholar
  44. Zhang F, Wang KX, Li GD, Chen JS (2009) Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem Commun 11:130–133CrossRefGoogle Scholar
  45. Zhang W, Yin J, Lin Z, Lin H, Lu H, Wang Y, Huang W (2015) Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim Acta 176:1136–1142CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations