Advertisement

Novel thermal decomposition approach for the synthesis of TiO2@Ag core-shell nanocomposites and their application for catalytic reduction of 4-nitrophenol

  • Jatin Mahajan
  • P. JeevanandamEmail author
Research Paper
  • 88 Downloads

Abstract

Metal-semiconductor core-shell nanocomposites with TiO2 as core and Ag nanoparticles as shell (TiO2@Ag) have been synthesized by a novel thermal decomposition approach. The size of Ag nanoparticles in TiO2@Ag can be controlled by varying the amount of silver acetate used during the synthesis. The synthesized TiO2@Ag core-shell nanocomposites were characterized using various state-of-art analytical techniques. XRD analysis confirms the formation of anatase and metallic silver in the core-shell nanocomposites and FT-IR studies prove purity of the TiO2@Ag core-shell nanocomposites. XPS studies confirm the presence of Ti4+ and metallic silver in the nanocomposites, and FESEM and TEM studies prove the coating of Ag nanoparticles on the surface of TiO2 spheres. The TiO2@Ag core-shell nanocomposites were explored as catalyst for the reduction of 4-nitrophenol in an aqueous solution at room temperature. In terms of catalytic performance, the TiO2@Ag core-shell nanocomposites are better compared to pure TiO2 as well as Ag nanoparticles.

Keywords

Core-shell nanocomposites Thermal decomposition 4-Nitrophenol reduction Nanostructured catalysts 

Notes

Acknowledgements

Jatin Mahajan thanks the University Grants Commission, Government of India, for the fellowship (JRF/SRF). The authors are thankful to Institute Instrumentation Centre, IIT Roorkee for providing various facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4500_MOESM1_ESM.docx (3.2 mb)
ESM 1 (DOCX 3312 kb)

References

  1. Abbasi E, Milani M, Aval SF, Kouhi M, Akbarzadeh A, Nasrabadi HT, Nikasa P, Joo SW, Hanifehpour Y, Nejati-koshki K, Samiei M (2016) Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol 42:173–180.  https://doi.org/10.3109/1040841x.2014.912200 CrossRefGoogle Scholar
  2. Allahverdiyev AM, Abamor ES, Bagirova M, Baydar SY, Ates SC, Kaya F, Kaya C, Rafailovich M (2013) Investigation of antileishmanial activities of TiO2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Exp Parasitol 135:55–63.  https://doi.org/10.1016/j.exppara.2013.06.001 CrossRefGoogle Scholar
  3. Batzli KM, Love BJ (2015) Formation of platinum-coated templates of insulin nanowires used in reducing 4-nitrophenol. Mater Sci Eng C 48:103–111.  https://doi.org/10.1016/j.msec.2014.11.056 CrossRefGoogle Scholar
  4. Chen C, Zheng Y, Zhan Y, Lin X, Zheng Q, Wei K (2011) Enhanced Raman scattering and photocatalytic activity of Ag/ZnO heterojunction nanocrystals. Dalton Trans 40:9566–9570.  https://doi.org/10.1039/c1dt10799b CrossRefGoogle Scholar
  5. Chen Q, Zheng L, Chen B, Lin J (2013) Scalable synthesis of TiO2–Ag Janus composite particles. Eur Polym J 49:2610–2616.  https://doi.org/10.1016/j.eurpolymj.2013.06.003 CrossRefGoogle Scholar
  6. Chen S, Wang J, Zhou X, Liang J, Liu C (2014) Synthesis of TiO2@Ag nano-composite particles using pulsed laser gas phase evaporation-liquid collection. Appl Mech Mater 670–671:22–25.  https://doi.org/10.4028/www.scientific.net/amm.670-671.22 CrossRefGoogle Scholar
  7. Chen B, Meng Y, Sha J, Zhong C, Hu W, Zhao N (2018) Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale 10:34–68.  https://doi.org/10.1039/c7nr07366f CrossRefGoogle Scholar
  8. Dai Z, Wang G, Xiao X, Wu W, Li W, Ying J, Zheng J, Mei F, Fu L, Wang J, Jiang C (2014) Obviously angular, cuboid-shaped TiO2 nanowire arrays decorated with Ag nanoparticle as ultrasensitive 3D surface-enhanced Raman scattering substrates. J Phys Chem C 118:22711–22718.  https://doi.org/10.1021/jp507601p CrossRefGoogle Scholar
  9. Dimitrijevic NM, Tepavcevic S, Liu Y, Rajh T, Silver SC, Tiede DM (2013) Nanostructured TiO2/polypyrrole for visible light photocatalysis. J Phys Chem C 117:15540–15544.  https://doi.org/10.1021/jp405562b CrossRefGoogle Scholar
  10. Dong Z, Yu G, Le X (2015) Gold nanoparticle modified magnetic fibrous silica microspheres as a highly efficient and recyclable catalyst for the reduction of 4-nitrophenol. New J Chem 39:8623–8629.  https://doi.org/10.1039/c5nj00713e CrossRefGoogle Scholar
  11. El-Toni AM, Habila MA, Labis JP, ALOthman ZA, Alhoshan M, Elzatahry AA, Zhang F (2016) Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 8:2510–2531.  https://doi.org/10.1039/c5nr07004j CrossRefGoogle Scholar
  12. Hamad AH, Li L, Liu Z, Zhong XL, Wang T (2016) Sequential laser and ultrasonic wave generation of TiO2@Ag core-shell nanoparticles and their anti-bacterial properties. Lasers Med Sci 31:263–273.  https://doi.org/10.1007/s10103-015-1855-x CrossRefGoogle Scholar
  13. Hamadanian M, Behpour M, Razavian AS, Jabbari V (2011) Effects of operational parameters on the TiO2 and TiO2/Ag core-shell photocatalysis system for decolorizing AR14. World Appl Sci J 14:54–59Google Scholar
  14. Han C, Yan L, Zhao W, Liu Z (2017) TiO2/CeO2 core/shell heterojunction nanoarrays for highly efficient photoelectrochemical water splitting. Int J Hydrog Energy 42:12276–12283.  https://doi.org/10.1016/j.ijhydene.2017.03.068 CrossRefGoogle Scholar
  15. He X, Cai Y, Zhang H, Liang C (2011) Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J Mater Chem 21:475–480.  https://doi.org/10.1039/c0jm02404j CrossRefGoogle Scholar
  16. Jalali HM (2015) Kinetic investigation of photo-catalytic activity of TiO2/metal nanocomposite in phenol photo-degradation using Monte Carlo simulation. RSC Adv 5:36108–36116.  https://doi.org/10.1039/c5ra02226f CrossRefGoogle Scholar
  17. Jana NR, Sau TK, Pal T (1999) Growing small silver particle as redox catalyst. J Phys Chem B 103:115–121.  https://doi.org/10.1021/jp982731f CrossRefGoogle Scholar
  18. Kandula S, Jeevanandam P (2015) Sun-light-driven photocatalytic activity by ZnO/Ag heteronanostructures synthesized via a facile thermal decomposition approach. RSC Adv 5:76150–76159.  https://doi.org/10.1039/c5ra14179f CrossRefGoogle Scholar
  19. Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2007) Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catal Today 120:133–138.  https://doi.org/10.1016/j.cattod.2006.07.043 CrossRefGoogle Scholar
  20. Lee IS, Lee N, Park J, Kim BH, Yi Y-W, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc 128:10658–10659.  https://doi.org/10.1021/ja063177n CrossRefGoogle Scholar
  21. Li L, Tang F, Liu H, Liu T, Hao N, Chen D, Teng X, He J (2010) In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 4:6874–6882.  https://doi.org/10.1021/nn100918a CrossRefGoogle Scholar
  22. Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q (2017) Core−shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117:5002–5069.  https://doi.org/10.1021/acs.chemrev.6b00596 CrossRefGoogle Scholar
  23. Liang H-C, Li X-Z (2009) Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films. Appl Catal B Environ 86:8–17.  https://doi.org/10.1016/j.apcatb.2008.07.015 CrossRefGoogle Scholar
  24. Liao G, Chen S, Quan X, Zhang Y, Zhao H (2011) Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Appl Catal B Environ 102:126–131.  https://doi.org/10.1016/j.apcatb.2010.11.033 CrossRefGoogle Scholar
  25. Long NV, Yang Y, Thi CM, Minh NV, Cao Y, Nogami M (2013) The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy 2:636–676.  https://doi.org/10.1016/j.nanoen.2013.06.001 CrossRefGoogle Scholar
  26. Ma J, Guo X, Zhang Y, Ge H (2014) Catalytic performance of TiO2@Ag composites prepared by modified photodeposition method. Chem Eng J 258:247–253.  https://doi.org/10.1016/j.cej.2014.06.120 CrossRefGoogle Scholar
  27. Mahajan J, Jeevanandam P (2018) Synthesis of TiO2@α-Fe2O3 core–shell heteronanostructures by thermal decomposition approach and their application towards sunlight-driven photodegradation of rhodamine B. New J Chem 42:2616–2626.  https://doi.org/10.1039/c7nj04892k CrossRefGoogle Scholar
  28. Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069.  https://doi.org/10.1021/cm062554s CrossRefGoogle Scholar
  29. Mondal K, Sharma A (2016) Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC Adv 6:83589–83612.  https://doi.org/10.1039/c6ra18102c CrossRefGoogle Scholar
  30. Muthuchamy N, Gopalan A, Lee K-P (2015) A new facile strategy for higher loading of silver nanoparticles onto silica for efficient catalytic reduction of 4-nitrophenol. RSC Adv 5:76170–76181.  https://doi.org/10.1039/c5ra11892a CrossRefGoogle Scholar
  31. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28.  https://doi.org/10.1021/nl051807y CrossRefGoogle Scholar
  32. Purbia R, Paria S (2015) Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. Nanoscale 7:19789–19873.  https://doi.org/10.1039/c5nr04729c CrossRefGoogle Scholar
  33. Qian J, Liu P, Xiao Y, Jiang Y, Cao Y, Ai X, Yang H (2009) TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv Mater 21:3663–3667.  https://doi.org/10.1002/adma.200900525 CrossRefGoogle Scholar
  34. Rai P, Majhi SM, Yu Y-T, Lee J-H (2015) Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv 5:76229–76248.  https://doi.org/10.1039/c5ra14322e CrossRefGoogle Scholar
  35. Sahoo PK, Kamal SSK, Shankar B, Sreedhar B, Durai L (2012) Facile chemical synthesis of nano-silver powders for printable electronics applications. J Exp Nanosci 7:520–528.  https://doi.org/10.1080/17458080.2010.536588 CrossRefGoogle Scholar
  36. Sharma G, Jeevanandam P (2013) A facile synthesis of multifunctional iron oxide@Ag core–shell nanoparticles and their catalytic applications. Eur J Inorg Chem 2013:6126–6136.  https://doi.org/10.1002/ejic.201301193 CrossRefGoogle Scholar
  37. Singh R, Dutta S (2018) A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel 220:607–620.  https://doi.org/10.1016/j.fuel.2018.02.068 CrossRefGoogle Scholar
  38. Son MY, Hong YJ, Kang YC (2013) Superior electrochemical properties of Co3O4 yolk–shell powders with a filled core and multishells prepared by a one-pot spray pyrolysis. Chem Commun 49:5678–5680.  https://doi.org/10.1039/c3cc42117a CrossRefGoogle Scholar
  39. Tanaka S, Nogami D, Tsuda N, Miyake Y (2009) Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range. J Colloid Interface Sci 334:188–194.  https://doi.org/10.1016/j.jcis.2009.02.060 CrossRefGoogle Scholar
  40. Wang L, Dou H, Lou Z, Zhang T (2013) Encapsuled nanoreactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale 5:2686–2691.  https://doi.org/10.1039/c2nr33088a CrossRefGoogle Scholar
  41. Yan J-M, Zhang X-B, Akita T, Haruta M, Xu Q (2010) One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132:5326–5327.  https://doi.org/10.1021/ja910513h CrossRefGoogle Scholar
  42. Yang Y, Wen J, Wei J, Xiong R, Shi J, Pan C (2013) Polypyrrole-decorated Ag-TiO2 nano fibers exhibiting enhanced photocatalytic activity under visible-light illumination. ACS Appl Mater Interfaces 5:6201–6207.  https://doi.org/10.1021/am401167y CrossRefGoogle Scholar
  43. Yang XH, Fu HT, Wang XC, Yang JL, Jiang XC, Yu AB (2014) Synthesis of silver-titanium dioxide nanocomposites for antimicrobial applications. J Nanopart Res 16:2526.  https://doi.org/10.1007/s11051-014-2526-8 CrossRefGoogle Scholar
  44. Yang L, Gao Y, Wang F, Liu P, Hu S (2017) Enhanced photocatalytic performance of cementitious material with TiO2@Ag modified fly ash micro-aggregates. Chin J Catal 38:357–364.  https://doi.org/10.1016/s1872-2067(16)62590-1 CrossRefGoogle Scholar
  45. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Sun Y, Liu Y (2011) Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. J Mater Chem 21:17746–17753.  https://doi.org/10.1039/c1jm12965a CrossRefGoogle Scholar
  46. Zhang L, Chen L, Chen L, Zhu G (2014) A facile synthesis of flower-shaped TiO2/Ag microspheres and their application in photocatalysts. RSC Adv 4:54463–54468.  https://doi.org/10.1039/c4ra08261c CrossRefGoogle Scholar
  47. Zhang L, Shi D, Liu B, Zhang G, Wang Q, Zhang J (2016) A facile hydrothermal etching process to in situ synthesize highly efficient TiO2/Ag nanocube photocatalysts with high-energy facets exposed for enhanced photocatalytic performance. CrystEngComm 18:6444–6452.  https://doi.org/10.1039/c6ce00649c CrossRefGoogle Scholar
  48. Zhao Y, Sun L, Xi M, Feng Q, Jiang C, Fong H (2014) Electrospun TiO2 nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. ACS Appl Mater Interfaces 6:5759–5767.  https://doi.org/10.1021/am5005859 CrossRefGoogle Scholar
  49. Zheng Y, Shu J, Wang Z (2015) AgCl@Ag composites with rough surfaces as bifunctional catalyst for the photooxidation and catalytic reduction of 4-nitrophenol. Mater Lett 158:339–342.  https://doi.org/10.1016/j.matlet.2015.06.033 CrossRefGoogle Scholar
  50. Zou X, Silva R, Huang X, Al-Sharab JF, Asefa T (2013) A self-cleaning porous TiO2–Ag core–shell nanocomposite material for surface-enhanced Raman scattering. Chem Commun 49:382–384.  https://doi.org/10.1039/c2cc35917k CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations