Advertisement

Synthesize ordered macroporous MnO2 and their application as curing agent for polysulfide polymers

  • Jianzheng Zhang
  • Xiaofei Xing
  • Junmei Chu
  • Zhenxing LiEmail author
  • Qiuyu ZhangEmail author
  • Rumin Wang
  • Songhua Wu
Research Paper
  • 13 Downloads

Abstract

Manganese dioxide is often used as a curing agent for polysulfide polymers because of its excellent properties. Here, we synthesize a freshly ordered macroporous MnO2 with crystalline framework walls using a handy method called one-pot operation. It is worth noting that this synthesis approach of the ordered macroporous MnO2 is facile and simple. It can obviously improve the mechanical properties of polysulfide polymers and accelerate the rate of vulcanization.

Keywords

Macroporous Manganese dioxide Polysulfide polymers One-pot operation 

Notes

Funding information

We gratefully acknowledge funding support from the Beijing Natural Science Foundation (2182061).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interests.

References

  1. Avramenko VA, Bratskaya SY, Karpov PA, Mayorov VY, Mironenko AY, Palamarchuk MS, Sergienko VI (2010) Macroporous catalysts for liquid-phase oxidation on the basis of manganese oxides containing gold nanoparticles. Dokl Phys Chem 2:193–197Google Scholar
  2. Benedetti TM, Gonçales VR, Petri DFS, Torresi CS, Torresi RM (2010) Macroporous MnO2 electrodes obtained by template assisted electrodeposition for electrochemical capacitors. J Braz Chem Soc 21:1704–1709CrossRefGoogle Scholar
  3. Benedetti TM, Gonçales VR, Torresi SICD, Torresi RM (2013) In search of an appropriate ionic liquid as electrolyte for macroporous manganese oxide film electrochemistry. J Power Sources 239:1–8CrossRefGoogle Scholar
  4. Caddy M (2001) Modified liquid polysulfide polymers: their preparation, characterisation, photocuring and potential photoapplications. University of Warwick 8:1–188Google Scholar
  5. Capozzi G, Modena G (1974) Oxidation of thiols. The thiol group (1974) Part 2 2:785–839Google Scholar
  6. Donaldson J, Grimes S, Houlson A, Behn S (2000) Curing of a polysulfide sealant with sodium birnessite. J Appl Polym Sci 77:1177–1181CrossRefGoogle Scholar
  7. Du Y, Meng Q, Wang J, Yan J, Fan H, Liu Y, Dai H (2012) Three-dimensional mesoporous manganese oxides and cobalt oxides: high-efficiency catalysts for the removal of toluene and carbon monoxide. Microporous Mesoporous Mater 162:199–206CrossRefGoogle Scholar
  8. Fettes EM, Jorczak JS (1950) Polysulfide polymers. Rubber Chem Technol 42:2217–2223Google Scholar
  9. Gao W, Bie M, Fu L, Chang PS, Quan YW (2017) Self-healable and reprocessable polysulfide sealants prepared from liquid polysulfide oligomer and epoxy resin. ACS Appl Mater Interfaces 9:15798–15808Google Scholar
  10. Gong P, Xie J, Fang D, Han D, He F, Li F, Qi K (2017) Effects of surface physicochemical properties on NH 3-SCR activity of MnO2 catalysts with different crystal structures. Chin J Catal 38:1925–1934CrossRefGoogle Scholar
  11. Hernández M, Grande AM, Dierkes W, Bijleveld J, Van Der Zwaag S, García SJ (2016) Turning vulcanized natural rubber into a self-healing polymer: effect of the disulfide/polysulfide ratio. ACS Sustain Chem Eng 4:5776–5784CrossRefGoogle Scholar
  12. Jorczak J, Fettes E (1951) Polysulfide liquid polymers. Ind Eng Chem 43:324–328CrossRefGoogle Scholar
  13. Kilcher G, Wang L, Duckham C, Tirelli N (2007) Polysulfide networks. In situ formation and characterization of the elastomeric behavior. Macromolecules 40:5141–5149CrossRefGoogle Scholar
  14. Lafont U, Van ZH, Van dZS (2012) Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfide-based thermosets. ACS Appl Mater Interfaces 4:6280–6288CrossRefGoogle Scholar
  15. Li Z, Zhang J, Li M, Xing X, Zhang Q (2018) Highly ordered macroporous–mesoporous Ce0.4Zr0.6O2 as dual-functional material in a polysulfide polymer. Nano Res 11:80–88CrossRefGoogle Scholar
  16. Lian LF, Yang J, Xiong PX, Weifeng Zhang WF, Wei MD (2014) Facile synthesis of hierarchical MnO2 submicrospheres composed of nanosheets and their application for supercapacitors. RSC Adv 4:40753–40757Google Scholar
  17. Liu M, Zhang G-J, Shen Z-R, Sun P-C, Ding D-T, Chen T-H (2009) Synthesis and characterization of hierarchically structured mesoporous MnO2 and Mn2O3. Solid State Sci 11:118–128CrossRefGoogle Scholar
  18. Liu Y, Chen Z, Shek CH (2014a) Hierarchical mesoporous MnO2 superstructures synthesized by soft-interface method and their catalytic performances. ACS Appl Mater Interfaces 6:9776–9784CrossRefGoogle Scholar
  19. Liu Z, Tan X, Gao X, Song L (2014b) Synthesis of three-dimensionally ordered macroporous manganese dioxide–carbon nanocomposites for supercapacitors. J Power Sources 267:812–820CrossRefGoogle Scholar
  20. Lowe GB (1997) The cure chemistry of polysulfides. Int J Adhes Adhes 17:345–348CrossRefGoogle Scholar
  21. Mahon A, Kemp TJ, Coates RJ (1998) Thermal and photodegradation of MnO2-, NaBO3 - and organic hydroperoxide-cured polysulfides: products and pathways. Polym Degrad Stab 62:187–198CrossRefGoogle Scholar
  22. Mochulsky M, Tobolsky AV (1948) Chemorheology of Polysulfide Rubbers. Ind Eng Chem 40:2155–2163CrossRefGoogle Scholar
  23. Pettit GR, Pettit GRI (1978) Perpetration of polysulfide rubber. J Chem Educ 55:472CrossRefGoogle Scholar
  24. Quan YW, Wang QJ, Fang JL, Chen QM (2003) Mechanical and surface properties of polysulfide-based polyurea modified with aminoethylaminopropyl poly (dimethylsiloxane). J Appl Polym Sci 87:584–588CrossRefGoogle Scholar
  25. Quan YW, Zhang GZ, Fan ZK, Chen QM (2013) The preparation and physical properties of polysulfide-based elastomers through one-pot thiol-ene click reaction. Express Polym Lett 7:577–584CrossRefGoogle Scholar
  26. Ren Y, Ma Z, Morris RE, Liu Z, Jiao F, Dai S, Bruce PG (2013) A solid with a hierarchical tetramodal micro-meso-macro pore size distribution. Nat Commun 4:1–6Google Scholar
  27. Schulman MA, Yazujian AD (1979) Technology of polysulfide sealants. ACS Symp Ser 113:129–155Google Scholar
  28. Wu Y, Li S, Cao Y, Xing S, Ma Z, Gao Y (2013) Facile synthesis of mesoporous α-MnO2 nanorod with three-dimensional frameworks and its enhanced catalytic activity for VOCs removal. Mater Lett 97:1–3CrossRefGoogle Scholar
  29. Wu J, Xing W, Huang G, Li H, Tang M, Wu S, Liu Y (2014) Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer 54:3314–3323CrossRefGoogle Scholar
  30. Xiang HP, Rong MZ, Zhang MQ (2016) Self-healing, reshaping, and recycling of vulcanized chloroprene rubber: a case study of multitask cyclic utilization of cross-linked polymer. ACS Sustain Chem Eng 4:2715–2724Google Scholar
  31. Xing W, Li H, Huang G, Cai L-H, Wu J (2017) Graphene oxide induced crosslinking and reinforcement of elastomers. Compos Sci Technol 144:223–229CrossRefGoogle Scholar
  32. Xu W, Zhang G, Chen H, Zhang G, Han Y, Chang Y, Gong P (2018) Mn/beta and Mn/ZSM-5 for the low-temperature selective catalytic reduction of NO with ammonia: effect of manganese precursors. Chin J Catal 39:118–127CrossRefGoogle Scholar
  33. Yan F, Xue G, Wan X (1999) Liquid polysulfide rubber as a new dopant of polypyrrole. Synth Met 107:35–38CrossRefGoogle Scholar
  34. Yu J, Zhao T, Zeng B (2008) Mesoporous MnO2 as enzyme immobilization host for amperometric glucose biosensor construction. Electrochem Commun 10:1318–1321CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Key Laboratory of Heavy Oil Processing, Institute of New EnergyChina University of Petroleum (Beijing)BeijingChina
  3. 3.AECC Beijing Institute of Aeronautical MaterialsBeijingChina

Personalised recommendations