Advertisement

Charge transference and conformational stress influence on the electronic properties of zigzag carbon nanowires

  • A. Tapia
  • C. Cab
  • M. L. Casais-Molina
  • J. Medina
  • T. Cu
  • G. CantoEmail author
Research Paper
  • 77 Downloads

Abstract

The structural and electronic properties of nanostructures resulting from the insertion of a linear carbon chain (LCC) into a semiconducting zigzag single-walled carbon nanotubes (SWCNTs) were studied using density functional theory. Although all isolated constituents exhibited a semiconductor behavior, semiconductor transitions to metallic character were found in the combined system. The competitive effects on the band gap due to the conformational stress and charge transfer were analyzed, both resulting in an overall metallic character. The electronic character in nanowires with (7,0) nanotube is affected by structural strain and charge transfer with a slightly higher influence of the charge transferred. Nanowires with (8,0) nanotube and bigger are mainly affected by strain, and their electronic states distribution retains the energy gap associated with isolated semiconducting nanotube with only a few empty states slightly above the Fermi level due to the charge transfer to LCC. A metallic behavior was found for all nanowires. However, a metallization dependence with nanotube diameters was found. LCC shows a metallic contribution in all cases. This study suggests that strain could produce nanostructures with a global metallic behavior which is provided by a metallic LCC plus a semiconducting nanotube for sizes as small as 6.5 Å. Zigzag nanowires smaller than this last value produce strained LCC accompanied by a transition from semiconductor to metal on both subsystems.

Keywords

Nanowires Nanotubes Linear carbon chain Density functional theory Electronics properties Modeling and simulation 

Notes

Acknowledgments

The authors acknowledge the Facultad de Ingeniería of the Universidad Autónoma de Yucatán (FIUADY) for easing this work.

Funding information

This study is funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT) of México, under the Project 255571 of the CB-2015.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bai H, Qiao W, Zhu Y, Huang Y (2015) Crystal orbital study on the combined carbon nanowires constructed from linear carbon chains encapsulated in zigzag double-walled carbon nanotubes. Curr Appl Phys 15:342–351CrossRefGoogle Scholar
  2. Bonabi F, Brun SJ, Pedersen TG (2017) Excitonic optical response of carbon chains confined in single-walled carbon nanotubes. Phys Rev B 96:155419CrossRefGoogle Scholar
  3. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–556CrossRefGoogle Scholar
  4. Casari CS, Tommasini M, Tykwinski RR, Milani A (2016) Carbon-atom wires:1-D systems with tunable properties. Nanoscale 8:4414–4435CrossRefGoogle Scholar
  5. Chen J, Yang L, Yang H, Dong J (2003) Electronic and transport properties of a carbon-atom chain in the core of semiconducting carbon nanotubes. Phys Lett A 316:101–106CrossRefGoogle Scholar
  6. Ciraci S, Dag S, Yildirim T, Gülseren O, Senger RT (2004) Functionalized carbon nanotubes and device applications. J Phys Condens Matter 16:R901–R960CrossRefGoogle Scholar
  7. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401CrossRefGoogle Scholar
  8. Guo ZX, Ding JW, Xiao Y, Mao YL (2006) Lattice dynamics of carbon chain inside a carbon nanotube. J Phys Chem B 110:21803–21807CrossRefGoogle Scholar
  9. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  10. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  11. Kang CS, Fujisawa K, Ko YI, Muramatsu H, Hayashi T, Endo M, Kim HJ, Lim D, Kim JH, Jung YC, Terrones M, Dresselhaus MS, Kim YA (2016) Linear carbon chains inside multi-walled carbon nanotubes: growth mechanism, thermal stability and electrical properties. Carbon 107:217–224CrossRefGoogle Scholar
  12. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428CrossRefGoogle Scholar
  13. Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  14. Lim SH, Lin J, Widjaja E, Poh CK, Luo Z, Gao PQ, Shen Z, Zhang Q, Gong H, Feng Y (2011) A molecular quantum wire of linear carbon chains encapsulated within single-walled carbon nanotube (Cn@SWNT). J Appl Phys 109:016108CrossRefGoogle Scholar
  15. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  17. Ordejón P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B R10441(R):53Google Scholar
  18. Román-Pérez G, Soler JM (2009) Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett 103:096102Google Scholar
  19. Rusznyak Á, Zólyomi V, Kürti J, Yang S, Kertesz M (2005) Bond-length alternation and charge transfer in a linear carbon chain encapsulated within a single-walled carbon nanotube. Phys Rev B 72:155420CrossRefGoogle Scholar
  20. Shi L, Sheng L, Yu L, An K, Ando Y, Zhao X (2011) Ultra-thin double-walled carbon nanotubes: a novel nanocontainer for preparing atomic wires. Nano Res 4:759–766CrossRefGoogle Scholar
  21. Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer JC, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin ZJ, Novotny L, Ayala P, Pichler T (2016) Confined linear carbon chains as a route to bulk carbine. Nat Mater 15:634–639CrossRefGoogle Scholar
  22. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779CrossRefGoogle Scholar
  23. Tapia A, Aguilera L, Cab C, Medina-Esquivel RA, de Coss R, Canto G (2010) Density functional study of the metallization of a linear carbon chain inside single wall carbon nanotubes. Carbon 48:4057–4062CrossRefGoogle Scholar
  24. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  25. Wang Z, Ke X, Zhu Z, Zhang F, Ruan M, Yang J (2000) Carbon-atom chain formation in the core of nanotubes. Phys Rev B 61:R2472–R2474CrossRefGoogle Scholar
  26. Wang Y, Huang Y, Yang B, Liu R (2006) Structural and electronic properties of carbon nanowires made of linear carbon chains enclosed inside zigzag carbon nanotubes. Carbon 44:456–462CrossRefGoogle Scholar
  27. Wang Y, Huang Y, Yang B, Liu R (2008) Crystal orbital study on carbon chains encapsulated in armchair carbon nanotubes with various diameters. Carbon 46:276–284CrossRefGoogle Scholar
  28. Yang X, Dong J (2005) Ferromagnetism of an all-carbon composite composed of a carbon nanowire inside a single-walled carbon nanotube. Appl Phys Lett 86:163105CrossRefGoogle Scholar
  29. Zhao X, Ando Y, Liu L, Jinno M, Suzuki T (2003) Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys Rev Lett 90:187401CrossRefGoogle Scholar
  30. Zhao C, Kitaura R, Hara H, Irle S, Shinohara H (2011) Growth of linear carbon chains inside thin double-wall carbon nanotubes. J Phys Chem C 115:13166–13170CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • A. Tapia
    • 1
  • C. Cab
    • 1
  • M. L. Casais-Molina
    • 1
  • J. Medina
    • 1
  • T. Cu
    • 1
  • G. Canto
    • 2
    Email author
  1. 1.Facultad de IngenieríaUniversidad Autónoma de YucatánMéridaMexico
  2. 2.Centro de Investigación en CorrosiónUniversidad Autónoma de CampecheCampecheMexico

Personalised recommendations