Advertisement

Manganese oxides/N-doped carbon particles with high capacity retention for aqueous rechargeable zinc battery

  • Dong-Shuai Li
  • Shan Wu
  • Yi-Fan Wang
  • Ming Sun
  • Wei-Liang LiuEmail author
  • Man-Man Ren
  • Fan-Gong KongEmail author
  • Shou-Juan Wang
  • Xin-Qiang Wang
Research Paper
  • 206 Downloads

Abstract

Manganese dioxide as the electrode for aqueous zinc-ion batteries (AZIBs) is influenced by the material dissolution. Herein, β-MnO2/N-doped carbon matrix (NCm) or Mn5O8/NCm composites were fabricated by effective synthesis process using polyaniline (PANI) as carbon/nitrogen sources. The conductive N-doped carbon layer was tied to β-MnO2, which increased the electrical conductivity of the β-MnO2 nanorod. At current densities of 200 mA g−1, the β-MnO2/NCm electrode delivered a higher discharge capacity of 331 mAh g−1 comparing with 185 mAh g−1 for the pure β-MnO2 electrode. Besides, the Mn5O8/NCm electrode could provide a discharge capacity of 266 mAh g−1. Therefore, the approach in this study may pave the way on preparing manganese oxides/NCm materials for AZIBs.

Keywords

Manganese oxide N-doped Cathode materials Capacity retention Mild aqueous electrolyte Energy storage 

Notes

Funding information

The work described in this paper was supported by Shandong Province Natural Science Foundation (ZR2012EMM009, ZR2013EMQ005 and ZR2018MEM012), the Foundation of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China (No. KF201602), the Scientific Research Foundation for the Returned Overseas Scholars in Jinan (20100406), National Training Program of Innovation and Entrepreneurship for Undergraduates (201610431033 and 201810431008), and National Natural Science Foundations of China (31570566, 31500489, 51372140, 51303086, 51403111, 51503107, and 51172130).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4491_MOESM1_ESM.docx (754 kb)
ESM 1 (DOCX 754 kb)

References

  1. Alfaruqi MH, Gim J, Kim S, Song J, Jo J, Kim S, Mathew V, Kim J (2015a) Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J Power Sources 288:320–327.  https://doi.org/10.1016/j.jpowsour.2015.04.140 CrossRefGoogle Scholar
  2. Alfaruqi MH, Mathew V, Gim J, Kim S, Song J, Baboo JP, Choi SH, Kim J (2015b) Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater 27:3609–3620.  https://doi.org/10.1021/cm504717p CrossRefGoogle Scholar
  3. Alfaruqi MH, Islam S, Mathew V, Song J, Kim S, Tung DP, Jo J, Kim S, Baboo JP, Xiu Z, Kim J (2017) Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. Appl Surf Sci 404:435–442.  https://doi.org/10.1016/j.apsusc.2017.02.009 CrossRefGoogle Scholar
  4. Boeun Lee HRS, Lee HR, Yoon CS, Kim JH, Chung KY, Cho BW, Oh SH (2016) Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. ChemSusChem 9:2948–2956.  https://doi.org/10.1002/cssc.201600702 CrossRefGoogle Scholar
  5. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29.  https://doi.org/10.1038/NMAT3191 CrossRefGoogle Scholar
  6. Cao K, Liu H, Li Y, Wang Y, Jiao L (2017) Encapsulating sulfur in δ-MnO2 at room temperature for Li-S battery cathode. Energy Storage Mater 9:78–84.  https://doi.org/10.1016/j.ensm.2017.06.012 CrossRefGoogle Scholar
  7. Chang L, Feng L, Lai-Peng M, Hui-Ming C (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62.  https://doi.org/10.1002/adma.200903328 CrossRefGoogle Scholar
  8. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935.  https://doi.org/10.1126/science.1212741 CrossRefGoogle Scholar
  9. Fu Y, Wei Q, Zhang G, Wang X, Zhang J, Hu Y, Wang D, Zuin L, Zhou T, Wu Y, Sun S (2018) High-performance reversible aqueous Zn-ion battery based on porous MnOx Nanorods coated by MOF-derived N-doped carbon. Adv Energy Mater 8:1801445.  https://doi.org/10.1002/aenm.201801445 CrossRefGoogle Scholar
  10. Gao T, Norby P, Krumeich F, Okamoto H, Nesper R, Fjellvåg H (2010) Synthesis and properties of layered-structured Mn5O8 Nanorods. J Phys Chem C 114:922–928.  https://doi.org/10.1021/jp9097606 CrossRefGoogle Scholar
  11. Hao J, Mou J, Zhang J, Dong L, Liu W, Xu C, Kang F (2018) Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim Acta 259:170–178.  https://doi.org/10.1016/j.electacta.2017.10.166 CrossRefGoogle Scholar
  12. He P, Yan M, Zhang G, Sun R, Chen L, An Q, Mai L (2017) Layered VS2 Nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater 7:1601920.  https://doi.org/10.1002/aenm.201601920 CrossRefGoogle Scholar
  13. Hu P, Yan M, Wang X, Han C, He L, Wei X, Niu C, Zhao K, Tian X, Wei Q, Li Z, Mai L (2016) Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices. Nano Lett 16:1523–1529.  https://doi.org/10.1021/acs.nanolett.5b03576 CrossRefGoogle Scholar
  14. Hu P, Yan M, Zhu T, Wang X, Wei X, Li J, Zhou L, Li Z, Chen L, Mai L (2017) Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl Mater Interfaces 9:42717–42722.  https://doi.org/10.1021/acsami.7b13110 CrossRefGoogle Scholar
  15. Hu P, Zhu T, Wang X, Wei X, Yan M, Li J, Luo W, Yang W, Zhang W, Zhou L, Zhou Z, Mai L (2018) Highly durable Na2V6O16.1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett 18:1758–1763.  https://doi.org/10.1021/acs.nanolett.7b04889 CrossRefGoogle Scholar
  16. Huang J, Wang Z, Hou M, Dong X, Liu Y, Wang Y, Xia Y (2018) Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat Commun 9:2906.  https://doi.org/10.1038/s41467-018-04949-4 CrossRefGoogle Scholar
  17. Islam S, Alfaruqi MH, Mathew V, Song J, Kim S, Kim S, Jo J, Baboo JP, Pham DT, Putro DY, Sun Y-K, Kim J (2017a) Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J Mater Chem A 5:23299–23309.  https://doi.org/10.1039/C7TA07170A CrossRefGoogle Scholar
  18. Islam S, Alfaruqi MH, Song J, Kim S, Pham DT, Jo J, Kim S, Mathew V, Baboo JP, Xiu Z, Kim J (2017b) Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. J Energy Chem 26:815–819.  https://doi.org/10.1016/j.jechem.2017.04.002 CrossRefGoogle Scholar
  19. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180.  https://doi.org/10.1002/adma.201202146 CrossRefGoogle Scholar
  20. Li F, Ren M, Liu W, Li G, Li M, Su L, Gao C, Hei J, Yang H (2017) Sea urchin-like CoO/co/N-doped carbon matrix hybrid composites with superior high-rate performance for lithium-ion batteries. J Alloys Compd 701:524–532.  https://doi.org/10.1016/j.jallcom.2017.01.144 CrossRefGoogle Scholar
  21. Liu R, Duay J, Lee SB (2010) Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 4:4299–4307.  https://doi.org/10.1021/nn1010182 CrossRefGoogle Scholar
  22. Liu G, Hall J, Nasiri N, Gengenbach T, Spiccia L, Cheah MH, Tricoli A (2015) Scalable synthesis of efficient water oxidation catalysts: insights into the activity of flame-made manganese oxide nanocrystals. ChemSusChem 8:4162–4171.  https://doi.org/10.1002/cssc.v8.17/issuetoc CrossRefGoogle Scholar
  23. Lund H (2007) Renewable energy strategies for sustainable development. Energy 32:912–919.  https://doi.org/10.1016/j.energy.2006.10.017 CrossRefGoogle Scholar
  24. Qiu N, Chen H, Yang Z, Sun S, Wang Y (2018a) Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries. Electrochim Acta 272:154–160.  https://doi.org/10.1016/j.electacta.2018.04.012 CrossRefGoogle Scholar
  25. Qiu Z, Peng Y, He D, Wang Y, Chen S (2018b) Ternary Fe3O4@C@PANi nanocomposites as high-performance supercapacitor electrode materials. J Mater Sci 53:12322–12333.  https://doi.org/10.1007/s10853-018-2451-9 CrossRefGoogle Scholar
  26. Ren M, Xu H, Li F, Liu W, Gao C, Su L, Li G, Hei J (2017) Sugarapple-like N-doped TiO2 @carbon core-shell spheres as high-rate and long-life anode materials for lithium-ion batteries. J Power Sources 353:237–244.  https://doi.org/10.1016/j.jpowsour.2017.04.015 CrossRefGoogle Scholar
  27. Sambandam B, Soundharrajan V, Kim S, Alfaruqi MH, Jo J, Kim S, Mathew V, Sun Y-k, Kim J (2018) Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. J Mater Chem A 6:3850–3856.  https://doi.org/10.1039/c7ta11237h CrossRefGoogle Scholar
  28. Senguttuvan P, Han S-D, Kim S, Lipson AL, Tepavcevic S, Fister TT, Bloom ID, Burrell AK, Johnson CS (2016) A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv Energy Mater 6:1600826.  https://doi.org/10.1002/aenm.201600826 CrossRefGoogle Scholar
  29. Shan X, Charles DS, Lei Y, Qiao R, Wang G, Yang W, Feygenson M, Su D, Teng X (2016) Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nat Commun 7:13370.  https://doi.org/10.1038/ncomms13370 CrossRefGoogle Scholar
  30. Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K (2015) “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350:938–943.  https://doi.org/10.1126/science.aab1595 CrossRefGoogle Scholar
  31. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359.  https://doi.org/10.1038/35104644 CrossRefGoogle Scholar
  32. Thirupathi B, Smirniotis PG (2012) Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: catalytic evaluation and characterizations. J Catal 288:74–83.  https://doi.org/10.1016/j.jcat.2012.01.003 CrossRefGoogle Scholar
  33. Trocoli R, La Mantia F (2015) An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8:481–485.  https://doi.org/10.1002/cssc.201403143 CrossRefGoogle Scholar
  34. Wang G, Tang Q, Bao H, Li X, Wang G (2013a) Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. J Power Sources 241:231–238.  https://doi.org/10.1016/j.jpowsour.2013.04.122 CrossRefGoogle Scholar
  35. Wang B, Wang Y, Sun B, Munroe P, Wang G (2013b) Coral-like V2O5 nanowhiskers as high-capacity cathode materials for lithium-ion batteries. RSC Adv 3:5069.  https://doi.org/10.1039/c3ra22425b CrossRefGoogle Scholar
  36. Wei T, Li Q, Yang G, Wang C (2018) An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J Mater Chem A 6:8006–8012.  https://doi.org/10.1039/C8TA02090F CrossRefGoogle Scholar
  37. Wu S, Wang Y, Liu W-L, Ren M, Kong F-G, Wang S-J, Wang X, Zhao H, Bao J-M (2018a) A high-capacity and long-life aqueous rechargeable zinc battery using porous metal–organic coordination polymers nanosheets cathode. Inorg Chem Front.  https://doi.org/10.1039/C8QI00959G CrossRefGoogle Scholar
  38. Wu B, Zhang G, Yan M, Xiong T, He P, He L, Xu X, Mai L (2018b) Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14:e1703850.  https://doi.org/10.1002/smll.201703850 CrossRefGoogle Scholar
  39. Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef HN (2018a) Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater 30:1705580.  https://doi.org/10.1002/adma.201705580 CrossRefGoogle Scholar
  40. Xia J, Zhu F, Wang L, Wang G, Meng Y, Zhang Y (2018b) In situ coating on LiFePO4 with ionic liquid as carbon source for high-performance lithium batteries. J Nanopart Res 20:196.  https://doi.org/10.1007/s11051-018-4298-z CrossRefGoogle Scholar
  41. Xu C, Li B, Du H, Kang F (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem 51:933–935.  https://doi.org/10.1002/ange.201106307 CrossRefGoogle Scholar
  42. Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, Mueller KT, Mai L, Liu J, Yang J (2018) Water-lubricated intercalation in V2O5 .nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater 30:1703725.  https://doi.org/10.1002/adma.201703725 CrossRefGoogle Scholar
  43. Zeng Y, Zhang X, Meng Y, Yu M, Yi J, Wu Y, Lu X, Tong Y (2017) Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv Mater 29:1700274.  https://doi.org/10.1002/adma.201700274 CrossRefGoogle Scholar
  44. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850.  https://doi.org/10.1002/adma.201100984 CrossRefGoogle Scholar
  45. Zhang L, Chen L, Zhou X, Liu Z (2015) Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc Hexacyanoferrate system. Adv Energy Mater 5:1400930.  https://doi.org/10.1002/aenm.201400930 CrossRefGoogle Scholar
  46. Zhang H, Wang Y-F, Liu W-L, Kong F-G, Ren M-M, Wang S-J, Wang X-Q, Duan X-L, Peng D (2018) Designed synthesis of CoO/CuO/rGO ternary nanocomposites as high-performance anodes for lithium-ion batteries. JOM 70:1793–1799.  https://doi.org/10.1007/s11837-018-2801-8 CrossRefGoogle Scholar
  47. Zhao S, Han B, Zhang D, Huang Q, Xiao L, Chen L, Ivey DG, Deng Y, Wei W (2018) Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J Mater Chem A 6:5733–5739.  https://doi.org/10.1039/c8ta01031e CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Key Laboratory of Amorphous and Polycrystalline Materials, Key Laboratory of Processing and Testing Technology of Glass Functional Ceramics of Shandong ProvinceQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China
  2. 2.State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of EducationQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China
  3. 3.State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations