Advertisement

Microwave-assisted synthesis and photothermal conversion of Cu2 − xSe hollow structure

  • Zejia Zhao
  • Guozhi JiaEmail author
  • Yanling Liu
  • Qiurui Zhang
  • Na Wang
Research Paper
  • 110 Downloads

Abstract

The Cu2 − xSe nanostructure is rapidly synthesized via one-pot microwave-assisted method. Excellent aqueous dispersion Cu2 − xSe hollow structures with an average diameter 160–180 nm and a shell thickness 11.3 nm are obtained successfully. The formation mechanism of the hollow structure is discussed in detail. The NPs exhibits a superior photostability and photothermal conversion efficiency (48%) owing to its unique cavity effect and LSPR property.

Keywords

Nanocrystalline materials Thermal properties Cu2 − xSe Microwave-assisted 

Notes

Funding information

This work has been supported by the National Natural Science Foundation of China (11674240, 11504261, and 11747158).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahmad R, Nicholson KS, Nawaz Q (2017) Correlation between product purity and process parameters for the synthesis of Cu2ZnSnS4 nanoparticles using microwave irradiation. Nano Res 19:238CrossRefGoogle Scholar
  2. Bernal MM, Di Pierro A, Novara C, Giorgis F, Mortazavi B, Saracco G, Fina A (2018) Edge-grafted molecular junctions between graphene nanoplatelets: applied chemistry to enhance heat transfer in nanomaterials. Adv Funct Mater 28:1706954CrossRefGoogle Scholar
  3. Chen XQ, Bai Y, Li Z, Wang LZ, Dou SX (2016) Dou ambient synthesis of one−/two-dimensional CuAgSe ternary nanotubes as counter electrodes of quantum-dot-sensitized solar cells. Chem Plus Chem 81:414–420Google Scholar
  4. Chen XQ, Li Z, Bai Y, Sun Q, Wang LZ, Dou SX (2015a) Room-temperature synthesis of Cu2−xE (E=S, Se) nanotubes with hierarchical architecture as high-performance counter electrodes of quantum-dot-sensitized solar cells. Chem Eur J 21:1055–1063CrossRefGoogle Scholar
  5. Chen XQ, Li Z, Dou SX (2015b) Ambient facile synthesis of gram-scale copper selenide nanostructures from commercial copper and selenium powder. Appl Mater Interfaces 7:13295–13302CrossRefGoogle Scholar
  6. Cao HL, Qian XF, Zai JT, Yin J, Zhu ZK (2006) Conversion of Cu2O nanocrystals into hollow Cu2-xSenanocages with the preservation of morphologies. Chem Commun 43:4548–4550CrossRefGoogle Scholar
  7. Chang Y, Teo JJ, Zeng HC (2005) Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21:1074–1079CrossRefGoogle Scholar
  8. Han C, Li Z, Lu GQ, Dou SX (2015) Robust scalable synthesis of surfactant-free thermoelectric metal chalcogenide nanostructures. Nano Energy 15:193–204CrossRefGoogle Scholar
  9. Han C, Sun Q, Cheng ZX, Wang JL, Li Z, Lu GQ, Dou SX (2014) Ambient scalable synthesis of surfactant-free thermoelectric CuAgSe nanoparticles with reversible metallic-n-p conductivity transition. J Am Chem Soc 136:17626–17633CrossRefGoogle Scholar
  10. Hanus J, Libenska H, Khalakhan I, Kuzminova A, Kylian O, Biederman H (2017) Localized surface plasmon resonance tuning via nanostructured gradient ag surfaces. Mater Lett 192:119–122CrossRefGoogle Scholar
  11. Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, Korgel BA (2011) Copper selenide nanocrystals for photothermal therapy. Nano Lett 11:2560–2566CrossRefGoogle Scholar
  12. Ingole PP, Joshi PM, Haram SK (2009) Room temperature synthesis of 1-hexanethiolate capped Cu2-xSe quan-tum dots, in Triton X-100 water-in-oil microemulsions. Colloid Surface A 337:136–140CrossRefGoogle Scholar
  13. Jia GZ, Lou WK, Cheng F, Wang XL, Yao JH, Dai N, Lin HQ, Chang K (2015) Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots. Nano Res 8:1443–1453CrossRefGoogle Scholar
  14. Jia GZ, Lu XC, Hao BX, Wang XL, Li YM, Yao JH (2013) Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode. RSC Adv 3:12826–12830CrossRefGoogle Scholar
  15. Jia GZ, Wu ZN, Wang P, Yao JH, Chang K (2016a) Morphological evolution of self-deposition Bi2Se3 nanosheets by oxygen plasma treatment. Sci Rep 6:22191CrossRefGoogle Scholar
  16. Jia GZ, Zhang Y, Wang P (2016b) Nano-photo-thermal energy drive MoS2/ZnO nanoheterojunctions growing. Opt Mater Express 6:876–883CrossRefGoogle Scholar
  17. Jiang X, Zhang S, Ren F, Chen L, Zeng JF, Zhu M, Cheng ZX, Gao MY, Li Z (2017) Ultra-small magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer. ACS Nano 11:5633–5645CrossRefGoogle Scholar
  18. Kong LD, Xing LX, Zhou BQ, Du LF, Shi XY (2017) Dendrimer-modified MoS2 nanoflakes as a platform for combinational gene silencing and photothermal therapy of tumors. ACS Appl Mater Interfaces 91:5995–16005Google Scholar
  19. Liao XH, Wang H, Zhu JJ, Chen HY (2001) Preparation of Bi2S3 nanorods by microwave irradiation. Mater Res Bull 36:1169–1176CrossRefGoogle Scholar
  20. Liu X, Law WC, Jeon M, Wang XL, Liu MX, Kim C, Prasad PN, Swihart MT (2013) Cu2–xSe nanocrystals with localized surface plasmon resonance as sensitive contrast agents for in vivo photoacoustic imaging: demonstration of sentinel lymph node mapping. Adv Healthcare Mater 2:952–957CrossRefGoogle Scholar
  21. Liu X, Swihart MT (2014) Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 43:3908–3920CrossRefGoogle Scholar
  22. Ni X, He ZZ, Liu X, Jiao QZ, Li HS, Feng CH, Zhao Y (2017) Ionic liquid-assisted solvothermal synthesis of hollow CoFe2O4 microspheres and their absorbing performances. Mater Lett 193:232–235CrossRefGoogle Scholar
  23. Park CH, Yun H, Yang H, Lee J, Kim BJ (2017) Photothermal imaging: fluorescent block copolymer-MoS2 nanocomposites for real-time photothermal heating and imaging. Adv Funct Mater 27:16044Google Scholar
  24. Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. P Nutr Soc 64(16):527–542CrossRefGoogle Scholar
  25. Seadira T, Sadanandam G, Ntho TA, Lu XJ, Masuku CM, Scurrell M (2017) Hydrogen production from glycerol reforming: conventional and green production. Rev Chem Eng 34:695–726CrossRefGoogle Scholar
  26. Song WZ, Gong JX, Wang YQ, Zhang Y, Zhang HM, Zhang WH, Zhang H, Liu X, Zhang TF, Yin WZ (2016) Gold nanoflowers with mesoporous silica as“nanocarriers for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light”. J Nanopart Res 18:101CrossRefGoogle Scholar
  27. Sun ZQ, Liao T, Kim JG, Liu KS, Jiang L, Kim JH, Dou SX (2013) Architecture designed ZnO hollow microspheres with wide-range visible-light photoresponses. J Mater Chem C 1:6924–6929CrossRefGoogle Scholar
  28. Sun JH, Zhang JS, Zhang MW, Antonietti M, Fu XZ, Wang XC (2012) Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat Commun 3:1139CrossRefGoogle Scholar
  29. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Cheminform 11:440–452Google Scholar
  30. Wang DQ, Hou C, Meng LJ, Long JG, Jing JG, Dang DF, Fei ZF, Dyson PJ (2017) Stepwise growth of gold coated cancer targeting carbon nanotubes for the precise delivery of doxorubicin combined with photothermal therapy. J Mater Chem B 5:1380–1387CrossRefGoogle Scholar
  31. Xu D, Yang LC, Wang Y, Wang GJ, Rensing C, Zheng SX (2018) Proteins enriched in charged amino acids control the formation and stabilization of selenium nanoparticles in Comamonas testosteroni S44. Sci Rep 8:4766CrossRefGoogle Scholar
  32. Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714CrossRefGoogle Scholar
  33. Yu L, Yu XY, Lou XW (2018) The design and synthesis of hollow micro-/nanostructures: present and future trends. Adv Mater 30(38):20CrossRefGoogle Scholar
  34. Zhang SH, Huang Q, Zhang LJ, Zhang H, Han YB, Sun Q, Cheng ZX, Qin HZ, Dou SX, Li Z (2017) Vacancy engineering of Cu2-xSe nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer. Nanoscale 10:3130–3143CrossRefGoogle Scholar
  35. Zhang SH, Sun CX, Zeng JF, Sun Q, Wang GL, Wang Y, Wu Y, Dou SX, Gao MY, Li Z (2016) Ambient aqueous synthesis of ultrasmall PEGylated Cu2-xSe nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer. Adv Mater 28:8927–8936CrossRefGoogle Scholar
  36. Zhu DW, Liu MX, Liu X, Liu Y, Prasad PN, Swihart MT (2017) Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. Adv Healthc Mater 2:952–957Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of ScienceTianjin Chengjian UniversityTianjinChina

Personalised recommendations