Advertisement

Facile synthesis of well-dispersed Bi2O3 nanoparticles and rGO as negative electrode for supercapacitor

  • Jiangfeng LiEmail author
  • Shuhui Huang
  • Jun Gu
  • Qingsheng Wu
  • Dandan Chen
  • Chuangcang Zhou
Research Paper
  • 81 Downloads

Abstract

Bi2O3 nanoparticles coupled with reduced graphene oxide (rGO) nanostructure were synthesized through liquid-phase precipitation and calcination method, and their supercapacitor properties were studied as negative electrode materials. The as-prepared Bi2O3/rGO achieved a maximum specific capacitance of 1423 F g−1 at a current density of 1 A g−1, excellent electrochemical stability (capacity retention of 81.8% from 1 A g−1 to 10 A g−1), and long-cycle stability (capacity retention of 63% over 5000 cycles). The excellent electrochemical performance should be due to the abundant active sites provided by rGO combined with proper loading of Bi2O3 nanoparticles.

Graphical abstract

Schematic illustration for the formation of Bi2O3/rGO nanocomposites

Keywords

Negative electrode Nanocomposites Stability Supercapacitor Electrochemical performance 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4481_MOESM1_ESM.docx (322 kb)
ESM 1 (DOCX 321 kb)

References

  1. Bao L, Li T, Chen S, Peng C, Li L, Xu Q, Chen Y, Ou E, Xu W (2017) 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13:1602077–1602085CrossRefGoogle Scholar
  2. Chen W, Yu H, Lee S, Wei T, Li J, Fan Z (2018) Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 47:2837–2872CrossRefGoogle Scholar
  3. Chen Y, Zhang W, Wu Q (2017) A highly sensitive room-temperature sensing materials for NH3: SnO2-nanorods coupled by rGO. Sensor Actuat B-Chem 242:1216–1226CrossRefGoogle Scholar
  4. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624CrossRefGoogle Scholar
  5. Deepi A, Srikesh G, Nesaraj AS (2018) Electrochemical performance of Bi2O3 decorated graphene nano composites for supercapacitor applications. Nano-Structures & Nano-Objects 15:10–16CrossRefGoogle Scholar
  6. Ganesh T, Ham D, Chang J, Cai G, Kil BH, Min SK, Mane RS, Han SH, Ganesh T, Ham D, Chang J et al (2011) PH dependent morphological evolution of beta-Bi2O3/PANI composite for supercapacitor applications. J Nanosci Nanotechnol 11:589–592CrossRefGoogle Scholar
  7. Genc R, Alas MO, Harputlu E, Repp S, Kremer N, Castellano M, Colak SG, Ocakoglu K, Erdem E (2017) High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Sci Rep 7:11222–11235CrossRefGoogle Scholar
  8. Gopalakrishnan M, Srikesh G, Mohan A, Arivazhagan V (2017) In-situ, synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications. Appl Surf Sci 403:578–583CrossRefGoogle Scholar
  9. Gujar TP, Shinde VR, Lokhande CD, Han SH (2006) Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J Power Sources 161:1479–1485CrossRefGoogle Scholar
  10. He D, Wu X, Chen Y, Situ Y, Zhong L, Huang H (2018) In-situ growth of lepidocrocite on Bi2O3 rod: a perfect cycle coupling photocatalysis and heterogeneous Fenton-like process by potential-level matching with advanced oxidation. Chemosphere 210:334–340CrossRefGoogle Scholar
  11. Hong S, Cao S, Xia N, Huang X, Jing Y, Liang Q, Yuan D (2014) Controllable growth of Bi2O3 with rod-like structures via the surfactants and its electrochemical properties. J Appl Electrochem 44:735–740CrossRefGoogle Scholar
  12. Huang X, Yan J, Zeng F, Yuan X, Zou W, Yuan D (2013) Facile preparation of orange-like Bi2O2.33 microspheres for high performance supercapacitor application. Mater Lett 90:90–92CrossRefGoogle Scholar
  13. Li J, Chen D, Zhang Q, Zhang Y, Wang X, Yang C, Wu Q (2018) synthesis of sponge-like Bi2O3 via a soft/hard-combined biomembrane support system for supercapacitor application. Eur J Inorg Chem 2017a:1688–1692CrossRefGoogle Scholar
  14. Li J, Liu W, Xiao D, Wang X (2017a) Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl Surf Sci 416:918–924CrossRefGoogle Scholar
  15. Li J, Wu Q, Zan G (2016) A high-performance supercapacitor with well-dispersed Bi2O3 nanospheres and active-carbon electrodes. Eur J Inorg Chem 2015:5751–5756CrossRefGoogle Scholar
  16. Li T, Yu H, Zhi L, Zhang W, Dang L, Liu Z, Lei Z (2017b) Facile electrochemical fabrication of porous Fe2O3 nanosheets for flexible asymmetric supercapacitors. J Phys Chem C 121:18982–18991CrossRefGoogle Scholar
  17. Liao Y, Huang Y, Shu D, Zhong Y, Hao J, He C, Zhong J, Song X (2016) Three-dimensional nitrogen-doped graphene hydrogels prepared via hydrothermal synthesis as high-performance supercapacitor materials. Electrochim Acta 194:136–142CrossRefGoogle Scholar
  18. Mai LQ, Minhaskhan A, Tian X, Hercule KM, Zhao YL, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923–2930CrossRefGoogle Scholar
  19. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2010) Nano-sized transition-metal oxides as negative-electrode materials forlithium-ion batteries. Nature 47:32–40Google Scholar
  20. Qiu Y, Yang M, Fan H, Zuo Y, Shao Y, Xu Y, Yang X, Yang S (2011) Anowires of alpha- and beta-Bi(2)O(3): phase-selective synthesis and application in photocatalysis. Parasite Vector 6:1–11Google Scholar
  21. Qu Y, Zan G, Wang J, Wu Q (2016) Preparation of eggplant-derived macroporous carbon tubes and composites of EDMCT/Co (OH)(CO3)0.5 nano-cone-arrays for high-performance supercapacitors. J Mater Chem A 4:4296–4304CrossRefGoogle Scholar
  22. Ramirez-Castro C, Crosnier O, Athouel L, Retoux R, Belanger D, Brousse T (2018) Electrochemical performance of carbon/MnO2 nanocomposites prepared via molecular bridging as supercapacitor electrode materials. J Electrochem Soc 162:A5179–A5184CrossRefGoogle Scholar
  23. Repp S, Harputlu E, Gurgen S, Castellano M, Kremer N, Pompe N, Wörner J, Hoffmann A, Thomann R, Emen FM (2018) Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 10:1877–1884CrossRefGoogle Scholar
  24. Shinde NM, Xia QX, Yun JM, Mane RS, Kim KH (2018) Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: superfast room-temperature direct wet chemical growth. ACS Appl Mater Interfaces 10:11037–11047CrossRefGoogle Scholar
  25. Su PG, Yang LY (2016) NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sensor Actuat B-Chem 223:202–208CrossRefGoogle Scholar
  26. Sumboja A, Liu J, Zheng WG, Zong Y, Zhang H, Liu Z (2018) Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 47:5919–5945CrossRefGoogle Scholar
  27. Sun J, Li Z, Wang J, Hong W, Gong P, Wen P, Wang Z, Yang S (2015) Ni/Bi battery based on Ni (OH)2 nanoparticles/graphene sheets and Bi2O3 rods/graphene sheets with high performance. J Alloys Compd 643:231–238CrossRefGoogle Scholar
  28. Tammanoon N, Wisitsoraat A, Sriprachuabwong C, Phokharatkul D, Tuantranont A, Phanichphant S, Liewhiran C (2015) Ultrasensitive NO2 sensor based on ohmic metal-semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures. ACS Appl Mater Interfaces 7:24338–24352CrossRefGoogle Scholar
  29. Wang SX, Jin CC, Qian WJ (2014) Bi2O3 with activated carbon composite as a supercapacitor electrode. J Alloys Compd 615:12–17CrossRefGoogle Scholar
  30. Wang YG, Xia YY (2006) Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds: I. The CLiMn2O4 system batteries, fuel cells, and energy conversion. J Electrochem Soc 153:A1425–A1431CrossRefGoogle Scholar
  31. Wu X, Wang Q, Zhang W, Wang Y, Chen W (2016) Nano nickel oxide coated graphene/polyaniline composite film with high electrochemical performance for flexible supercapacitor. Electrochim Acta 211:1066–1075CrossRefGoogle Scholar
  32. Xia N, Yuan D, Zhou T, Chen J, Mo S, Liu Y (2011) Microwave synthesis and electrochemical characterization of mesoporous carbon@Bi2O3 composites. Mater Res Bull 46:687–691CrossRefGoogle Scholar
  33. Xu W, Jiang Z, Yang Q, Huo W, Javed MS, Li Y, Huang L, Gu X, Hu C (2018) Approaching the lithium-manganese oxides’ energy storage limit with Li2MnO3 nanorods for high-performance supercapacitor. Nano Energy 43:168–176CrossRefGoogle Scholar
  34. Zheng FL, Li GR, Ou YN, Wang ZL, Su CY, Tong YX (2010) Synthesis of hierarchical rippled Bi(2)O(3) nanobelts for supercapacitor applications. Chem Commun 46:5021–5023CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jiangfeng Li
    • 1
    Email author
  • Shuhui Huang
    • 1
  • Jun Gu
    • 1
  • Qingsheng Wu
    • 2
  • Dandan Chen
    • 1
  • Chuangcang Zhou
    • 1
  1. 1.Department of ChemistryLishui UniversityLishuiPeople’s Republic of China
  2. 2.School of Chemical Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations