Mannitol-assisted synthesis of ultrathin Bi2MoO6 architectures: excellent selective adsorption and photocatalytic performance

  • Yongxing Xing
  • Rongqing Cheng
  • Haipeng Li
  • Zhiliang Liu
  • Chunfang DuEmail author
Research Paper


Ultrathin structures have gained more and more attention due to their large surface area and abundant reactive sites, which are beneficial for the improvement of performances. Herein, we report an ultrathin Bi2MoO6 synthesized by a simple mannitol-assisted hydrothermal method for the first time. The as-synthesized ultrathin Bi2MoO6 exhibits highly selective adsorption efficiency toward various positively charged organic dyes. Moreover, the ultrathin Bi2MoO6 displays enhanced photocatalytic activity in comparison with pristine Bi2MoO6. Systematic photoelectrochemical measurements reveal that the higher separation efficiency of photogenerated carriers takes responsibility for the improved photocatalytic performance. This work provides a simple path for designing ultrathin nanoarchitectures and widening application for these ultrathin materials.


Ultrathin nanosheets Selective adsorption Photodegradation Mannitol Nanostructured catalysts 


Funding information

This work was supported by the National Natural Science Foundation of China (NSFC, 51462025 and 51764042) and Opening Project of Hunan Key Laboratory of Mineral Materials and Application (MMA 201702).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4478_MOESM1_ESM.docx (7 mb)
ESM 1 (DOCX 7208 kb)


  1. Bickley RI, Gonzalez-Carrefio T, Palmisano L, Tilley RJD, Williams JM (1997) Relative proportions of rutile and pseudo−brookite phases in the Fe (III)−TiO2 system at elevated temperature. Mater Chem Phys 51:47–−53CrossRefGoogle Scholar
  2. Cao YC (2004) Synthesis of square gadolinium−oxide nanoplated. J Am Chem Soc 126:7456–7457CrossRefGoogle Scholar
  3. Chen F, An W, Liu L, Liang Y, Cui W (2017) Highly efficient removal of bisphenol A by a three−dimensional graphene hydrogel−AgBr@rGO exhibiting adsorption/photocatalysis synergy. Appl Catal B 217:65–80CrossRefGoogle Scholar
  4. Corma A, Navas J, Sabater MJ (2018) Advances in one−pot synthesis through borrowing hydrogen catalysis. Chem Rev 118:1410–1459CrossRefGoogle Scholar
  5. Dai Z, Qin F, Zhao H, Ding J, Liu Y, Chen R (2016a) Crystal defect engineering of Aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis. ACS Catal 6:3180–3192CrossRefGoogle Scholar
  6. Dai W, Yu J, Xu H, Hu X, Luo X, Yang L, Tu X (2016b) Synthesis of hierarchical flower−like Bi2MoO6 microspheres as efficient photocatalyst for photoreduction of CO2 into solar fuels under visible light. CrystEngComm 18:3472–3480CrossRefGoogle Scholar
  7. Di J, Xia J, Yin S, Xu H, Xu L, Xu Y, He M, Li H (2014) Preparation of sphere−like g−C3N4/BiOI photocatalysts via a reactable ionic liquid for visible−light−driven photocatalytic degradation of pollutants. J Mater Chem A 2:5340–5351CrossRefGoogle Scholar
  8. Fan S, Li X, Tan J, Zeng L, Yin Z, Tadé M, Liu S (2018a) Enhanced photoeletrocatalytic reduction dechlorinations of PCP by Ru−Pd BQDs anchored Titania NAEs composites with double Schottky junctions: first−principles evidence and experimental verifications. Appl Catal B 227:499–511CrossRefGoogle Scholar
  9. Fan S, Li X, Zhao Q, Zeng L, Zhang M, Yin Z, Lian T, Tadéb M, Liu S (2018b) Rational design and synthesis of highly oriented copper−zinc ferrite QDs/titania NAE nanoheterojunction composites with novel photoelectrochemical and photoelectrocatalytic behaviors. Dalton Trans 47:12769–12782CrossRefGoogle Scholar
  10. Feng J, Sun X, Wu C, Peng L, Lin C, Hu S, Yang J, Xie Y (2011) Metallic few−layered VS2 ultrathin nanosheets: high two−dimensional conductivity for in−plane supercapacitors. J Am Chem Soc 133:17832–17838CrossRefGoogle Scholar
  11. Huang H, Li X, Wang J, Dong F, Chu PK, Zhang T, Zhang Y (2015a) Anionic group self−doping as a promising strategy: band−gap engineering and multi−functional applications of high−performance CO3 2−−doped Bi2O2CO3. ACS Catal 5:4094–4103CrossRefGoogle Scholar
  12. Huang H, Liu L, Zhang Y, Tian N (2015b) One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible−light−driven photocatalytic activity for rhodamine B degradation and photocurrent generation. J Alloy Compd 619:807–811CrossRefGoogle Scholar
  13. Huang H, Cao R, Yu S, Xu K, Hao W, Wang Y, Dong F, Zhang T, Zhang Y (2017) Single−unit−cell layer established Bi2WO6 3D hierarchical architectures: efficient adsorption, photocatalysis and dye−sensitized photoelectrochemical performance. Appl Catal B 219:526–537CrossRefGoogle Scholar
  14. Kim TW, Choi K−S (2014) Nanoporous BiVO4 photoanodes with dual−layer oxygen evolution catalysts for solar water splitting. Science 343:990–994CrossRefGoogle Scholar
  15. Kim HG, Borse PH, Choi W, Lee JS (2005) Photocatalytic nanodiodes for visible−light photocatalysis. Angew Chem 117:4661–4665CrossRefGoogle Scholar
  16. Kongmark C, Martis V, Pirovano C, Löfberg A, van Beek W, Sankar G, Rubbens A, Cristol S, Vannier RN, Bordes-Richard E (2010) Synthesis of γ−Bi2MoO6 catalyst studied by combined high−resolution powder diffraction, XANES and Raman spectroscopy. Catal Today 157:257–262CrossRefGoogle Scholar
  17. Kongmark C, Coulter R, Cristol S, Rubbens A, Pirovano C, Löfberg A, Sankar G, van Beek W, Bordes-Richard E, Vannier R-N (2012) A comprehensive scenario of the crystal growth of γ−Bi2MoO6 catalyst during hydrothermal synthesis. Cryst Growth Des 12:5994–6003CrossRefGoogle Scholar
  18. Kossoy A, Feldman Y, Wachtel E, Gartsman K, Lubomirsky I, Fleig J, Maier J (2006) On the origin of the lattice constant anomaly in nanocrystalline ceria. Phys Chem Chem Phys 8:1111–1115CrossRefGoogle Scholar
  19. Li GS, Boerio-Goates J, Woodfield BF, Li LP (2004) Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals. Appl Phys Lett 85:2059–2061CrossRefGoogle Scholar
  20. Li H, Li K, Wang H (2009) Hydrothermal synthesis and photocatalytic properties of bismuth molybdate materials. Mater Chem Phys 116:134–142CrossRefGoogle Scholar
  21. Li H, Liu J, Hou W, Du N, Zhang R, Tao X (2014) Synthesis and characterization of g−C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity. Appl Catal B 160-161:89–97CrossRefGoogle Scholar
  22. Li J, Zhao K, Yu Y, Zhang L (2015) Facet−level mechanistic insights into general homogeneous carbon doping for enhanced solar−to−hydrogen conversion. Adv Funct Mater 25:2189–2201CrossRefGoogle Scholar
  23. Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two−dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 10:577–583CrossRefGoogle Scholar
  24. Liu Y, Kong J, Yuan J, Zhao W, Zhu X, Sun C, Xie J (2018) Enhanced photocatalytic activity over flower−like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem Eng J 331:242–254CrossRefGoogle Scholar
  25. Ma Y, Jia Y, Jiao Z, Yang M, Qi Y, Bi Y (2015) Hierarchical Bi2MoO6 nanosheet−built frameworks with excellent photocatalytic properties. Chem Commun 51:6655–6658CrossRefGoogle Scholar
  26. Moniz SJ, Blackman CS, Southern P, Weaver PM, Tang J, Carmalt CJ (2015) Visible−light driven water splitting over BiFeO3 photoanodes grown via the LPCVD reaction of [Bi(OtBu)3] and [Fe(OtBu)3]2 and enhanced with a surface nickel oxygen evolution catalyst. Nanoscale 7:16343–16353CrossRefGoogle Scholar
  27. Natarajan TS, Bajaj HC, Tayade RJ (2015) Synthesis of homogeneous sphere−like Bi2WO6 nanostructure by silica protected calcination with high visible−light−driven photocatalytic activity under direct sunlight. CrystEngComm 17:1037–1049CrossRefGoogle Scholar
  28. Ricciardulli A G, Yang S, Wetzelaer G−J A H, Feng X, Blom P W M (2018) Hybrid silver nanowire and graphene−based solution−processed transparent electrode for organic optoelectronics. Adv Funct Mater 1706010Google Scholar
  29. Song H, Wu R, Yang J, Dong J, Ji G (2018) Fabrication of CeO2 nanoparticles decorated three−dimensional flower−like BiOI composites to build p−n heterojunction with highly enhanced visible−light photocatalytic performance. J Colloid Interface Sci 512:325–334CrossRefGoogle Scholar
  30. Su Y, Zhu B, Guan K, Gao S, Lv L, Du C, Peng L, Hou L, Wang X (2012) Particle size and structural control of ZnWO4 nanocrystals via Sn2+ doping for tunable optical and visible photocatalytic properties. J Phys Chem C 116:18508–18517CrossRefGoogle Scholar
  31. Sun Z, Liao T, Dou Y, Hwang SM, Park MS, Jiang L, Kim JH, Dou SX (2014a) Generalized self−assembly of scalable two−dimensional transition metal oxide nanosheets. Nat Commun 5:3813CrossRefGoogle Scholar
  32. Sun Y, Sun Z, Gao S, Cheng H, Liu Q, Lei F, Wei S, Xie Y (2014b) All−surface−atomic−metal chalcogenide sheets for high−efficiency visible−light photoelectrochemical water splitting. Adv Energy Mater 4:1300611CrossRefGoogle Scholar
  33. Tian X, Qu S, Wang B, Xu Z (2014) Hydrothermal synthesis and photocatalytic property of Bi2MoO6/ZnO composite material. Res Chem Intermediat 41:7273–7283CrossRefGoogle Scholar
  34. Tian J, Liu R, Liu Z, Yu C, Liu M (2017a) Boosting the photocatalytic performance of Ag2CO3 crystals in phenol degradation via coupling with trace N−CQDs. Chinese J Catal 38:1999–2008CrossRefGoogle Scholar
  35. Tian J, Wu Z, Liu Z, Yu C, Yang K, Zhu L, Huang W, Zhou Y (2017b) Low−cost and efficient visible−light−driven CaMg(CO3)2@Ag2CO3 microspheres fabricated via an ion exchange route. Chinese J Catal 38:1899–1908CrossRefGoogle Scholar
  36. Tian J, Liu Z, Zeng D, Yu C, Liu X, Yang K, Liu H (2018) The preparation and characterization of CaMg(CO3)2@Ag2CO3/Ag2S/NCQD nanocomposites and their photocatalytic performance in phenol degradation. J Nanopart Res 20:182CrossRefGoogle Scholar
  37. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two−dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–−712CrossRefGoogle Scholar
  38. Wang S, Ding X, Zhang, X, Pang H, Hai, X, Zhan G, Zhou W, Song H, Zhang L, Chen H, Ye J (2017) In situ carbon homogeneous doping on ultrathin bismuth molybdate: a dual−purpose strategy for efficient molecular oxygen activation. Adv Funct Mater 1703923Google Scholar
  39. Wang H, Yong D, Chen S, Jiang S, Zhang X, Shao W, Zhang Q, Yan W, Pan B, Xie Y (2018) Oxygen−vacancy−mediated exciton dissociation in BiOBr for boosting charge−carrier−involved molecular oxygen activation. J Am Chem Soc 140:1760–1766CrossRefGoogle Scholar
  40. Xing Y, Zhang J, Liu Z, Du C (2017) Steering photoinduced charge kinetics via anionic group doping in Bi2MoO6 for efficient photocatalytic removal of water organic pollutants. RSC Adv 7:35883–35896CrossRefGoogle Scholar
  41. Xiong J, Cheng G, Li G, Qin F, Rong C (2011) Well−crystallized square−like 2D BiOCl nanoplates: mannitol−assisted hydrothermal synthesis and improved visible−light−driven photocatalytic performance. RSC Adv 1:1542–1553CrossRefGoogle Scholar
  42. Xu Y, Al-Salim N, Bumby CW, Tilley RD (2009) Synthesis of SnS quantum dots. J Am Chem Soc 131:15990–15991CrossRefGoogle Scholar
  43. Yang Y, Teng F, Kan Y, Yang L, Liu Z, Gu W, Zhang A, Hao W, Teng Y (2017) Investigation of the charges separation and transfer behavior of BiOCl/BiF3 heterojunction. Appl Catal B 205:412–420CrossRefGoogle Scholar
  44. Yu C, Wu Z, Liu R, Dionysioub D, Yang K, Wang C, Liu H (2017) Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination. Appl Catal B 209:1–11CrossRefGoogle Scholar
  45. Zeng D, Yang K, Yu C, Chen F, Li X, Wu Z, Liu H (2018) Phase transformation and microwave hydrothermal guided a novel double Z−scheme ternary vanadate heterojunction with highly efficient photocatalytic performance. Appl Catal B 237:449–463CrossRefGoogle Scholar
  46. Zhang Y, Fan H, Li M, Tian H (2013) Ag/BiPO4 heterostructures: synthesis, characterization and their enhanced photocatalytic properties. Dalton Trans 42:13172–13178CrossRefGoogle Scholar
  47. Zhang JL, Zhang LS, Yu N, Xu KB, Lia SJ, Wang HL, Liu JS (2015) Flower−like Bi2S3/Bi2MoO6 heterojunction superstructures with enhanced visible−light−driven photocatalytic activity. RSC Adv 5:75081–75088CrossRefGoogle Scholar
  48. Zheng Y, Zhou T, Zhao X, Pang WK, Gao H, Li S, Zhou Z, Liu H, Guo Z (2017) Atomic interface engineering and electric−field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv Mater 29:1700396CrossRefGoogle Scholar
  49. Zhou F, Shi R, Zhu Y (2011) Significant enhancement of the visible photocatalytic degradation performances of γ−Bi2MoO6 nanoplate by graphene hybridization. J Mol Catal A 340:77–82CrossRefGoogle Scholar
  50. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon−based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRefGoogle Scholar
  51. Zhu Y, Ling Q, Liu Y, Wang H, Zhu Y (2015) Photocatalytic H2 evolution on MoS2−TiO2 catalysts synthesized via mechanochemistry. Phys Chem Chem Phys 17:933–940CrossRefGoogle Scholar
  52. Zou YQ, Hormann FM, Bach T (2018) Iminium and enamine catalysis in enantioselective photochemical reactions. Chem Soc Rev 47:278–290CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yongxing Xing
    • 1
  • Rongqing Cheng
    • 1
  • Haipeng Li
    • 1
  • Zhiliang Liu
    • 1
  • Chunfang Du
    • 1
    • 2
    Email author
  1. 1.College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotPeople’s Republic of China
  2. 2.Hunan Key Laboratory of Mineral Materials and ApplicationCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations