Advertisement

Microwave-assisted synthesis of bismuth vanadate nanoflowers decorated with gold nanoparticles with enhanced photocatalytic activity

  • Juliana S. SouzaEmail author
  • Fernando T. H. Hirata
  • Paola Corio
Research Paper
  • 18 Downloads

Abstract

We describe the synthesis of bismuth vanadate nanoflowers decorated with Au nanoparticles (Au-BiVO4NF) using conventional oil bath or microwave irradiation as a heating source, where de AuNPs exhibit sizes of 29 ± 10 nm and 50 ± 11 nm. We show how microwaves can be used to replace well-stablished methods in the synthesis of inorganic nanomaterials and drastically reduce both time and energy consumptions. The Au-BiVO4NF obtained under microwave irradiation exhibited the same physical-chemical properties of those prepared through conventional heating; however, time lapse for synthetizing the heterojunction decreased from 4 h to only 10 min. The heterojunction is a very promising photocatalyst under visible light irradiation since BiVO4 exhibits low band-gap energy and Au nanoparticles can behave as electron sinks and/or as electron sources through plasmon resonance, increasing charge separation of photogenerated electrons and holes. This synergic effect resulted in a heterojunction able to degrade ~ 95% of methylene blue after 6 h of UV-visible light irradiation.

Keywords

Photocatalysis Plasmon effect Nanomaterials Bismuth vanadate Gold nanoparticles Microwave synthesis 

Notes

Acknowledgments

We are thankful to LNNano-CNPEM for the use of TEM and SEM facilities.

Funding information

This work was supported by FAPESP (grant nos. 2016/21070-5, 2016/01020-3, 2017/11395-7, and 2017/12688-8) and CNPq (grant no. 474056/2013-9) and in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing financial interests.

References

  1. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680.  https://doi.org/10.1021/ja076503n CrossRefGoogle Scholar
  2. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374.  https://doi.org/10.1039/b9nr00377k CrossRefGoogle Scholar
  3. Brittany L, Hayes PD (2002) Microwave synthesis chemistry at the speed of light. CEM Publishing, MatthewsGoogle Scholar
  4. Cao S-W, Yin Z, Barber J, Boey FYC, Loo SCJ, Xue C (2012) Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts. Appl Mater Interfaces 4:418–423.  https://doi.org/10.1021/am201481b CrossRefGoogle Scholar
  5. Guo M, He Q, Wang W, Wu J, Wang W (2016) Fabrication of BiVO4: effect of structure and morphology on photocatalytic activity and its methylene blue decomposition mechanism. J Wuhan Univ Technol Mat Sci Edit 31:791–798.  https://doi.org/10.1007/s11595-016-1447-z CrossRefGoogle Scholar
  6. Ibrahim AAM, Khan I, Iqbal N, Qurashi A (2017) Facile synthesis of tungsten oxide – bismuth vanadate nanoflakes as photoanode material for solar water splitting. Int J Hydrog Energy 42:3423–3430.  https://doi.org/10.1016/j.ijhydene.2016.09.095 CrossRefGoogle Scholar
  7. Iliev V, Tomova D, Bilyarska L, Tyuliev G (2007) Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J Mol Catal A 263:32–38.  https://doi.org/10.1016/j.molcata.2006.08.019 CrossRefGoogle Scholar
  8. Li H, Liu G, Chen S, Liu Q, Lu W (2011) Synthesis and characterization of monoclinic BiVO4 nanorods and nanoplates via microemulsion-mediated hydrothermal method. Phys E 43:1323–1328.  https://doi.org/10.1016/j.physe.2011.01.018 CrossRefGoogle Scholar
  9. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921CrossRefGoogle Scholar
  10. Mingce L, Jingjing J, Yan L, Ruqiong C, Liying Z, Weimin C (2011) Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of Au modified BiVO4. Nano-Micro Lett 3:171–177.  https://doi.org/10.5101/nml.v3i3.p171-177 CrossRefGoogle Scholar
  11. Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H (2011) The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem 3:489–492.  https://doi.org/10.1038/nchem.1048 CrossRefGoogle Scholar
  12. Nuchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis - a critical technology overview. Green Chem 6:128–141.  https://doi.org/10.1039/b310502d CrossRefGoogle Scholar
  13. Pingmuang K, Wetchakun N, Kangwansupamonkon W, Ounnunkad K, Inceesungvorn B, Phanichphant S (2013) Photocatalytic mineralization of organic acids over visible-light-driven Au/BiVO4 photocatalyst. Int J Photoenerg 2013:7–7.  https://doi.org/10.1155/2013/943256 CrossRefGoogle Scholar
  14. Quiñonero J, Lana-Villarreal T, Gómez R (2016) Improving the photoactivity of bismuth vanadate thin film photoanodes through doping and surface modification strategies. Appl Catal B 194:141–149.  https://doi.org/10.1016/j.apcatb.2016.04.057 CrossRefGoogle Scholar
  15. Ren L, Jin L, Wang J-B, Yang F, Qiu M-Q, Yu Y (2009) Template-free synthesis of BiVO4 nanostructures: I. Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light. Nanotechnology 20:115603.  https://doi.org/10.1088/0957-4484/20/11/115603 CrossRefGoogle Scholar
  16. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc 126:4943–4950.  https://doi.org/10.1021/ja0315199 CrossRefGoogle Scholar
  17. Tan G, Zhang L, Ren H, Wei S, Huang J, Xia A (2013) Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method. Appl Mater Interfaces 5:5186–5193.  https://doi.org/10.1021/am401019m CrossRefGoogle Scholar
  18. Trzciński K et al (2016) Micropatterning of BiVO4 thin films using laser-induced crystallization. Adv Mater Interfaces 3:1500509.  https://doi.org/10.1002/admi.201500509 CrossRefGoogle Scholar
  19. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11:440–452.  https://doi.org/10.1002/chem.200400417 CrossRefGoogle Scholar
  20. Tsuji M, Miyamae N, Lim S, Kimura K, Zhang X, Hikino S, Nishio M (2006) Crystal structures and growth mechanisms of Au@Ag core−shell nanoparticles prepared by the microwave−polyol method. Cryst Grow Design 6:1801–1807.  https://doi.org/10.1021/cg060103e CrossRefGoogle Scholar
  21. Venkatesan R, Velumani S, Ordon K, Makowska-Janusik M, Corbel G, Kassiba A (2018) Nanostructured bismuth vanadate (BiVO4) thin films for efficient visible light photocatalysis. Mater Chem Phys 205:325–333.  https://doi.org/10.1016/j.matchemphys.2017.11.004 CrossRefGoogle Scholar
  22. Wang W, Yu Y, An T, Li G, Yip HY, Yu JC, Wong PK (2012) Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism. Environ Sci Technol 46:4599–4606.  https://doi.org/10.1021/es2042977 CrossRefGoogle Scholar
  23. Xuming Z, Yu Lim C, Ru-Shi L, Din Ping T (2013) Plasmonic photocatalysis. Rep Prog Phys 76:046401CrossRefGoogle Scholar
  24. Yan W, Peng J, Ming J, Tie-Wei W, Chuan-Fei G, Si-Shen X, Zhong-Lin W (2009) The shape evolution of gold seeds and gold@silver core–shell nanostructures. Nanotechnology 20:305602CrossRefGoogle Scholar
  25. Zhang A, Zhang J, Cui N, Tie X, An Y, Li L (2009) Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst. J Mol Catal A 304:28–32.  https://doi.org/10.1016/j.molcata.2009.01.019 CrossRefGoogle Scholar
  26. Zhang L, Lin C-Y, Valev VK, Reisner E, Steiner U, Baumberg JJ (2014) Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting. Small 10:3970–3978.  https://doi.org/10.1002/smll.201400970 CrossRefGoogle Scholar
  27. Zhang Y, Gong H, Zhang Y, Liu K, Cao H, Yan H, Zhu J (2017) The controllable synthesis of octadecahedral BiVO4 with exposed {111} facets. Eur J Inorg Chem 2017:2990–2997.  https://doi.org/10.1002/ejic.201700165 CrossRefGoogle Scholar
  28. Zhu Y-J, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555.  https://doi.org/10.1021/cr400366s CrossRefGoogle Scholar
  29. Ziwritsch M, Müller S, Hempel H, Unold T, Abdi FF, van de Krol R, Friedrich D, Eichberger R (2016) Direct time-resolved observation of carrier trapping and polaron conductivity in BiVO4. Energ Lett 1:888–894.  https://doi.org/10.1021/acsenergylett.6b00423 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréBrazil
  2. 2.Instituto de QuímicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations