Core-shell structure Ag@Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst

  • Yongfeng LiEmail author
  • Liangjun Xiao
  • Fangfang Liu
  • Yongshen Dou
  • Sanmao Liu
  • Yun Fan
  • Gao Cheng
  • Wei Song
  • Junli Zhou
Research Paper


The silver palladium bimetallic core-shell structure nanoparticles (Ag@Pd NPs) were synthesized by a thin Pd shell slowly generating on the outmost of Ag nanoparticle according to galvanic replacement mechanism. Then, the 2D layered structure manganese dioxide (MnO2) substrate was used to support the as-synthesize Ag@Pd NPs to prepare Ag@Pd/MnO2 catalyst for toluene purification in oxidation reaction. Physicochemical properties of the samples were characterized by a number of different analytical techniques. It is found that the Ag@Pd NPs are homogeneously spherical shape with an average particle diameter size of 7.1 nm. And the MnO2 substrate can not only uniformly disperse Ag@Pd active component on its surface for its high specific surface area and mesopore volume, but also provide the reactive lattice oxygen by its mixed oxidation states of Mn3+/Mn4+. Moreover, the core-shell configuration of Ag@Pd NPs can improve the state phase transformation from Pd0 to PdO2 with the aid of lattice oxygen of MnO2 substrate, because of the lattice oxygen migration controlled strong metal-support interaction (SMSI) effect between palladium active component and MnO2 substrate. So, there would be more exposed PdO2 active sites on the Ag@Pd/MnO2 catalyst relative to monometallic Pd/MnO2 catalyst. Hence, the as-prepared bimetallic core-shell Ag@Pd/MnO2 catalyst exhibits greatly higher toluene oxidation activity at lower reaction temperature than monometallic Pd/MnO2 catalyst, indicating it is a promising catalyst for use in volatile organic compounds (VOCs) purification.


Core-shell Palladium Manganese oxide Composite Oxidation Nanolayers Nanostructured catalysts 


Funding information

This work was financially supported by National Natural Science Foundation of China (51678160, 21606051, 21576054), Guangdong Province Science and Technology Project (2016A020221033), Guangzhou Science and Technology Project (201704020202), Natural Science Foundation of Guangdong Province (2018A030310563) and Research Fund for Applied Science and Technology of Guangdong (2016B020241003).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Abdel-Fattah WI, Eid MM, El-Moez SIA, Mohamed E, Ali GW (2017) Synthesis of biogenic Ag@Pd core-shell nanoparticles having anti-cancer/anti-microbial functions. Life Sci 183:28–36. CrossRefGoogle Scholar
  2. Ahn S, Kang SM, Lee SH, Park JB (2014) Facile synthesis of graphene-supported MnO, Mn3O4, and MnO2 nanocomposites by controlling gas environment. B Korean Chem Soc 35:2889–2890. CrossRefGoogle Scholar
  3. Baddour-Hadjean R, Pereira-Ramos JP (2010) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319. CrossRefGoogle Scholar
  4. Chai HJ, Zhang ZM, Zhou YQ, Zhu LH, Lv HQ, Wang N (2018) Roles of intrinsic Mn3+ sites and lattice oxygen in mechanochemical debromination and mineralization of decabromodiphenyl ether with manganese dioxide. Chemosphere 207:41–49. CrossRefGoogle Scholar
  5. Chen D, Li J, Cui P, Liu H, Yang J (2016) Gold-catalyzed formation of core-shell gold-palladium nanoparticles with palladium shells up to three atomic layers. J Mater Chem A 4:3813–3821. CrossRefGoogle Scholar
  6. Cheng G, Yu L, Lan B, Sun M, Lin T, Fu Z, Su X, Qiu M, Guo C, Xu B (2016) Controlled synthesis of α-MnO 2 nanowires and their catalytic performance for toluene combustion. Mater Res Bull 75:17–24. CrossRefGoogle Scholar
  7. Cimino S, Lisi L, Tortorelli M (2016) Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning: effect of KCl poisoning. Chem Eng J 283:223–230. CrossRefGoogle Scholar
  8. da Silva AGM, Rodrigues TS, Taguchi LSK, Fajardo HV, Balzer R, Probst LFD, Camargo PHC (2016) Pd-based nanoflowers catalysts: controlling size, composition, and structures for the 4-nitrophenol reduction and BTX oxidation reactions. J Mater Sci 51:603–614. CrossRefGoogle Scholar
  9. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417. CrossRefGoogle Scholar
  10. Dole HAE, Isaifan RJ, Sapountzi FM, Lizarraga L, Aubert D, Princivalle A, Vernoux P, Baranova EA (2013) Low temperature toluene oxidation over Pt nanoparticles supported on Yttria stabilized-zirconia. Catal Lett 143:996–1002. CrossRefGoogle Scholar
  11. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433. CrossRefGoogle Scholar
  12. Gilson RC, Black KCL, Lane DD, Achilefu S (2017) Hybrid TiO2-ruthenium nano-photosensitizer synergistically produces reactive oxygen species in both hypoxic and normoxic conditions. Angew Chem Int Edit 56:10717–10720. CrossRefGoogle Scholar
  13. Huang C, Wang HL, Li L, Wang Q, Lu Q, de Gouw JA, Zhou M, Jing SA, Lu J, Chen CH (2015) VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China. Atmos Chem Phys 15:11081–11096. CrossRefGoogle Scholar
  14. Ioannides T, Verykios XE (1996) Charge transfer in metal catalysts supported on doped TiO2: a theoretical approach based on metal–semiconductor contact theory. J Catal 161:560–569. CrossRefGoogle Scholar
  15. Jha A, Chandole T, Pandya R, Roh HS, Rode CV (2014) Solvothermal synthesis of mesoporous manganese oxide with enhanced catalytic activity for veratryl alcohol oxidation. RSC Adv 4:19450–19455. CrossRefGoogle Scholar
  16. Julien C, Massot M, Baddour-Hadjean R, Franger S, Bach S, Pereira-Ramos JP (2003) Raman spectra of birnessite manganese dioxides. Solid State Ionics 159:345–356. CrossRefGoogle Scholar
  17. Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs) - a review. Atmos Environ 140:117–134. CrossRefGoogle Scholar
  18. Kang J-S, Sohn Y, Pradhan D, Leung KT (2018) Bimetallic Au@M (M = Ag, Pd, Fe, and Cu) nanoarchitectures mediated by 1,4-Phenylene Diisocyanide functionalization Langmuir 34:2849–02855000
  19. Lesiak B, Mierzwa B, Jiricek P, Bieloshapka I, Juchniewicz K, Borodzinski A (2018) Effect of treatment at high temperatures on morphology of a carbon supported Pd catalyst investigated by X-ray diffraction and photoelectron spectroscopy aided with QUASES. Appl Surf Sci 458:855–863. CrossRefGoogle Scholar
  20. Li JM, Liu JY, Yang Y, Qin D (2015) Bifunctional Ag@Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced Raman spectroscopy. J Am Chem Soc 137:7039–7042. CrossRefGoogle Scholar
  21. Li JQ, Liu H, Deng YZ, Liu G, Chen YF, Yang J (2016) Emerging nanostructured materials for the catalytic removal of volatile organic compounds. Nanotechnol Rev 5:147–181. CrossRefGoogle Scholar
  22. Li Y, Li Y, Yu Q, Yu L (2012) The catalytic oxidation of toluene over Pd-based FeCrAl wire mesh monolithic catalysts prepared by electroless plating method. Catal Commun 29:127–131. CrossRefGoogle Scholar
  23. Li Y, Liu F, Fan Y, Cheng G, Song W, Zhou J (2018) Silver palladium bimetallic core-shell structure catalyst supported on TiO2 for toluene oxidation. Appl Surf Sci 462:207–212. CrossRefGoogle Scholar
  24. Liao HC, Zuo PY, Liu MM (2016) Study on the correlation between the surface active species of Pd/cordierite monolithic catalyst and its catalytic activity. Mater Sci Eng B-Adv Funct Solid-State Mater 211:45–52. CrossRefGoogle Scholar
  25. Lupan O, Postica V, Hoppe M, Wolff N, Polonskyi O, Pauporté T, Viana B, Majérus O, Kienle L, Faupel F, Adelung R (2018) PdO/PdO2 functionalized ZnO : Pd films for lower operating temperature H-2 gas sensing. Nanoscale 10:14107–14127. CrossRefGoogle Scholar
  26. Ma CJ, Wen YY, Rong CL, Zhang NW, Zheng JB, Chen BH (2017) Delta-MnO2 with an ultrahigh Mn4+ fraction is highly active and stable for catalytic wet air oxidation of phenol under mild conditions. Catal Sci Technol 7:3200–3204. CrossRefGoogle Scholar
  27. Michalik-Zym A, Dula R, Duraczyńska D, Kryściak-Czerwenka J, Machej T, Socha RP, Włodarczyk W, Gaweł A, Matusik J, Bahranowski K, Wisła-Walsh E, Lityńska-Dobrzyńska L, Serwicka EM (2015) Active, selective and robust Pd and/or Cr catalysts supported on Ti-, Zr- or Ti, Zr -pillared montmorillonites for destruction of chlorinated volatile organic compounds. Appl Catal B Environ 174:293–307. CrossRefGoogle Scholar
  28. Qiu Y, Rojas E, Murray RA, Irigoyen J, Gregurec D, Castro-Hartmann P, Fledderman J, Estrela-Lopis I, Donath E, Moya SE (2015) Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs. Nanoscale 7:6588–6598. CrossRefGoogle Scholar
  29. Rong SP, Zhang PY, Wang JL, Liu F, Yang YJ, Yang GL, Liu S (2016) Ultrathin manganese dioxide nanosheets for formaldehyde removal and regeneration performance. Chem Eng J 306:1172–1179. CrossRefGoogle Scholar
  30. Sekol RC, Li XK, Cohen P, Doubek G, Carmo M, Taylor AD (2013) Silver palladium core-shell electrocatalyst supported on MWNTs for ORR in alkaline media. Appl Catal B Environ 138:285–293. CrossRefGoogle Scholar
  31. Tauster SJ, Fung SC (1978) Strong metal-support interactions: occurrence among the binary oxides of groups IIA–VB. J Catal 55:29–35. CrossRefGoogle Scholar
  32. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100:170–175. CrossRefGoogle Scholar
  33. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nat Nanotechnol 6:302–307. CrossRefGoogle Scholar
  34. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. CrossRefGoogle Scholar
  35. Vandenbroucke AM, Nguyen Dinh MT, Nuns N, Giraudon JM, de Geyter N, Leys C, Lamonier JF, Morent R (2016) Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chem Eng J 283:668–675. CrossRefGoogle Scholar
  36. Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, de Lucas-Consuegra A, Valverde JL, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260. CrossRefGoogle Scholar
  37. Wang XY, Zhao WT, Zhang TH, Zhang YF, Jiang LL, Yin SF (2018) Facile fabrication of shape-controlled CoxMnyO beta nanocatalysts for benzene oxidation at low temperatures. Chem Commun 54:2154–2157. CrossRefGoogle Scholar
  38. Yang Y, Zhang S, Wang S, Zhang K, Wang H, Huang J, Deng S, Wang B, Wang Y, Yu G (2015) Ball milling synthesized MnOx as highly active catalyst for gaseous POPs removal: significance of mechanochemically induced oxygen vacancies. Environ Sci Technol 49:4473–4480. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Foshan Shunde Kinglei Environment & Technology Co., LTDFoshanPeople’s Republic of China

Personalised recommendations