Managing complexity: the case of nanomaterials

  • D. A. GkikaEmail author
  • K. Ovaliadis
  • N. Vordos
  • L. Magafas


The profile management of nanomaterials requires a complicated synergy between component function and shape, material, process, and costs. This study attempts to uncover these relationships by grouping nanomaterial profile components with matching characteristics using cluster analysis. The analysis resulted in the identification of 11 distinct clusters, out of which the physicochemical properties appear to have the higher complexity. We found that this is an efficient method for inspecting the heterogeneity of the nanomaterial profile building blocks and for quantifying nanomaterial characteristics. Using the Cynefin framework, we identified the parameters, which allowed us to comprehend the complexity of the issues, design relative strategies, and overcome difficulties stemming from the application of reductionist approaches on complicated circumstances. It introduces the emergence and implications of “complex” approaches within nanomaterial profile. Cost lies in the disorder domain and the urgency to address the critical issue of asymmetric information calls to understand complex relations. The crux of the issue is the lack of a connected profiling chain that links the nanomaterial development process steps, cost, risk, and toxicity studies, which could reduce opposition from “nano-skeptics” providing sufficient safeguards given the predictive growth of nanomaterials.

Graphical abstract


Complex systems Clustering Nanomaterial Cynefin framework Management Modeling and simulation 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arts JHE, Hadi M, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K, Landsiedel R (2014) A critical appraisal of existing concepts for the grouping of nanomaterials. Regul Toxicol Pharmacol 70(2):492–506. CrossRefGoogle Scholar
  2. Baez B (2002) Confidentiality in qualitative research: reflections on secrets, power and agency. Qual Res 2(1):35–58. CrossRefGoogle Scholar
  3. Bosch OJH, Nguyen NC, Maeno T, Yasui T (2013) Managing complex issues through evolutionary learning laboratories: managing complex issues through ELLabs. Syst Res Behav Sci 30(2):116–135. CrossRefGoogle Scholar
  4. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73(1):137–150. CrossRefGoogle Scholar
  5. Delgado GC (2010) Economics and governance of nanomaterials: potential and risks. Technol Soc 32(2):137–144. CrossRefGoogle Scholar
  6. French S, Carter E, Niculae C (2007) Decision support in nuclear and radiological emergency situations: are we too focused on models and technology? Int J Emerg Manag 4(3):421. CrossRefGoogle Scholar
  7. Gan G, Ma C, Wu J (2007) Data clustering: theory, algorithms, and applications. In: ASA-SIAM series on statistics and applied probability 20. SIAM, Society for Industrial and Applied Mathematics ; American Statistical Association, Philadelphia, Pa.: Alexandria, VaGoogle Scholar
  8. Godwin H, Nameth C, Avery D, Bergeson LL, Bernard D, Beryt E, Boyes W, Brown S, Clippinger AJ, Cohen Y, Doa M, Hendren CO, Holden P, Houck K, Kane AB, Klaessig F, Kodas T, Landsiedel R, Lynch I, Malloy T, Miller MB, Muller J, Oberdorster G, Petersen EJ, Pleus RC, Sayre P, Stone V, Sullivan KM, Tentschert J, Wallis P, Nel AE (2015) Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9(4):3409–3417. CrossRefGoogle Scholar
  9. Gorzeń-Mitka I, Okręglicka M (2014) Improving decision making in complexity environment. Procedia Econ Financ 16:402–409. CrossRefGoogle Scholar
  10. Gubrium JF, Holstein JA (eds) (2002) Handbook of interview research: context & method. Sage Publications, Thousand Oaks, CalifGoogle Scholar
  11. Gudkov V, Montealegre V, Nussinov S, Nussinov Z (2008) Community detection in complex networks by dynamical simplex evolution. Phys Rev E 78(1).
  12. Guo Q, Lu X, Gao Y, Zhang J, Yan B, Su D, Song A, Zhao X, Wang G (2017) Cluster analysis: a new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients. Sci Rep 7(1).
  13. Hansen SF, Jensen KA, Baun A (2014) NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. J Nanopart Res 16(1).
  14. Harvey WS (2011) Strategies for conducting elite interviews. Qual Res 11(4):431–441. CrossRefGoogle Scholar
  15. Hassanien AE, Azar AT, Snasael V, Kacprzyk J, Abawajy JH (eds) (2015) Big data in complex systems. Vol. 9. Studies in Big data. Springer International Publishing, Cham. CrossRefGoogle Scholar
  16. Heimo T, Kumpula JM, Kaski K, Saramäki J (2008) Detecting modules in dense weighted networks with the Potts method. J Stat Mech: Theory Exp 2008(8):P08007. CrossRefGoogle Scholar
  17. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. 1st MIT Press ed. In: Complex adaptive systems. MIT Press, Cambridge, MassGoogle Scholar
  18. Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Frontiers in Chemistry 2(August).
  19. Hsu JJ, Finkelstein DM, Schoenfeld DA (2015) Outcome-driven cluster analysis with application to microarray data. Edited by Guy Brock. PLOS ONE 10(11):e0141874. CrossRefGoogle Scholar
  20. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3):241–254. CrossRefGoogle Scholar
  21. Kempermann G (2017) Cynefin as reference framework to facilitate insight and decision-making in complex contexts of biomedical research. Front Neurosci 11(November).
  22. Kurtz CF, Snowden DJ (2003) The new dynamics of strategy: sense-making in a complex and complicated world. IBM Syst J 43(3)Google Scholar
  23. Lancaster K (2017) Confidentiality, anonymity and power relations in elite interviewing: conducting qualitative policy research in a politicised domain. Int J Soc Res Methodol 20(1):93–103. CrossRefGoogle Scholar
  24. Laux P, Tentschert J, Riebeling C, Braeuning A, Creutzenberg O, Epp A, Fessard V, Haas K-H, Haase A, Hund-Rinke K, Jakubowski N, Kearns P, Lampen A, Rauscher H, Schoonjans R, Störmer A, Thielmann A, Mühle U, Luch A (2018) Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch Toxicol 92(1):121–141. CrossRefGoogle Scholar
  25. Merriam SB, Tisdell EJ (2016) Qualitative research: a guide to design and implementation. In: Fourth edition. The Jossey-Bass higher and adult education series. Jossey-Bass, San Francisco, CAGoogle Scholar
  26. Mikecz R (2012) Interviewing elites: addressing methodological issues. Qual Inq 18(6):482–493. CrossRefGoogle Scholar
  27. Morris ZS (2009) The truth about interviewing elites. Politics 29(3):209–217. CrossRefGoogle Scholar
  28. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J-P (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980):876–878. CrossRefGoogle Scholar
  29. Ngô C, Van de Voorde M (2014) Nanotechnology in a nutshell. Atlantis Press, Paris. CrossRefGoogle Scholar
  30. O’Connor RV, Lepmets M (2015) Exploring the use of the cynefin framework to inform software development approach decisions. ACM Press, New York, pp 97–101. CrossRefGoogle Scholar
  31. Oomen A, Bleeker E, Bos P, van Broekhuizen F, Gottardo S, Groenewold M, Hristozov D et al (2015) Grouping and read-across approaches for risk assessment of nanomaterials. Int J Environ Res Public Health 12(10):13415–13434. CrossRefGoogle Scholar
  32. Peters RJB, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJP, Mech A, Moniz FB, Pesudo LQ, Rauscher H, Schoonjans R, Undas AK, Vettori MV, Weigel S, Aschberger K (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54(August):155–164. CrossRefGoogle Scholar
  33. Pitkethly MJ (2004) Nanomaterials – the driving force. Mater Today 7(12):20–29. CrossRefGoogle Scholar
  34. Remington K, Pollack J (2007) Tools for complex projects. Gower, Aldershot, England; Burlington, VTGoogle Scholar
  35. Roco MC (2004) Nanoscale science and engineering: unifying and transforming tools. AICHE J 50(5):890–897. CrossRefGoogle Scholar
  36. Saha P (2014) A systemic perspective to managing complexity with enterprise architecture. In: Advances in business information systems and analytics (ABISA) book series. Business Science Reference, an imprint of IGI Global, Hershey, PAGoogle Scholar
  37. Shin S, Song I, Um S (2015) Role of physicochemical properties in nanoparticle toxicity. Nanomaterials 5(3):1351–1365. CrossRefGoogle Scholar
  38. Som C, Nowack B, Krug HF, Wick P (2013) Toward the development of decision supporting tools that can be used for safe production and use of nanomaterials. Acc Chem Res 46(3):863–872. CrossRefGoogle Scholar
  39. Stone V, Pozzi-Mucelli S, Tran L, Aschberger K, Sabella S, Vogel U, Poland C, Balharry D, Fernandes T, Gottardo S, Hankin S, Hartl MGJ, Hartmann N, Hristozov D, Hund-Rinke K, Johnston H, Marcomini A, Panzer O, Roncato D, Saber AT, Wallin H, Scott-Fordsmand JJ (2014) ITS-NANO - prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part Fibre Toxicol 11(1):9. CrossRefGoogle Scholar
  40. Toivonen R, Kivelä M, Saramäki J, Viinikainen M, Vanhatalo M, Sams M (2012) Networks of emotion concepts. Edited by Olaf Sporns. PLoS One 7(1):e28883. CrossRefGoogle Scholar
  41. Van Breukelen GJP, Candel MJJM (2012) Calculating sample sizes for cluster randomized trials: we can keep it simple and efficient! J Clin Epidemiol 65(11):1212–1218. CrossRefGoogle Scholar
  42. Young JC, Rose DC, Mumby HS, Benitez-Capistros F, Derrick CJ, Finch T, Garcia C, Home C, Marwaha E, Morgans C, Parkinson S, Shah J, Wilson KA, Mukherjee N (2018) A methodological guide to using and reporting on interviews in conservation science research. Methods Ecol Evol 9(1):10–19. CrossRefGoogle Scholar
  43. Zeng A, Shen Z, Zhou J, Wu J, Fan Y, Wang Y, Eugene Stanley H (2017) The science of science: from the perspective of complex systems. Phys Rep 714–715(November):1–73. CrossRefGoogle Scholar
  44. Zhang Z, Murtagh F, Van Poucke S, Lin S, Lan P (2017) Hierarchical cluster analysis in clinical research with heterogeneous study population: highlighting its visualization with R. Ann Transl Med 5(4):75. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • D. A. Gkika
    • 1
    Email author
  • K. Ovaliadis
    • 1
  • N. Vordos
    • 1
  • L. Magafas
    • 1
  1. 1.Electrical Engineering Department, Complex Systems LabEastern Macedonia and Thrace Institute of TechnologyKavalaGreece

Personalised recommendations