Advertisement

Unusual magnetic relaxation behavior of hydrophilic colloids based on gadolinium(III) octabutoxyphthalocyaninate

  • Rustem R. ZairovEmail author
  • Alexey V. Yagodin
  • Mikhail Khrizanforov
  • Alexander G. Martynov
  • Irek R. Nizameev
  • Victor V. Syakaev
  • Aidar T. Gubaidullin
  • Timur Kornev
  • Ondrej Kaman
  • Yulia H. Budnikova
  • Yulia G. Gorbunova
  • Asiya R. Mustafina
Research Paper

Abstract

The work introduces the original and efficient approach toward hydrophilization of Gd(III) complex with hydrophobic octa-2,3,9,10,16,17,23,24-n-butoxyphthalocyanine (1H2). It consists in the solvent-mediated self-assembly of the preliminary synthesized octa-2,3,9,10,16,17,23,24-n-butoxyphthalocyaninatogadolinium(III) acetate 1GdOAc into the colloid species followed by their hydrophilization through the polyelectrolyte deposition. Small-angle X-ray scattering, TEM, and DLS measurements of the aqueous colloids reveal the disk-like colloid species formation with the greatest size value about 40 nm. Deposition of polystyrene sulfonate layer onto the surface of nanocolloids does not prevent their partial aggregation in aqueous solutions. The phthalocyaninate ligand is the reason for specific electrochemical behavior of the colloids, which is affected by the nanoparticulate form of the complex. The magnetic behavior of the complex reveals it as pure paramagnetic, while magnetic relaxation behavior of the colloids points to some specificity. The r2/r1 ratio measured at 0.47 T is higher (2.6) than the ratios commonly reported for Gd(III) complexes, coming to 36.8 at 11.75 T. Thus, the synthesized colloids are more efficient as T2- than T1-contrasting agents at magnetic field strengths above 1.4 T.

Graphical abstract

Keywords

Phthalocyanine Solvent-mediated self-assembly MRI contrast agent Transverse relaxation Gadolinium complex Hydrophilization MRI contrasting agents 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11051_2018_4455_MOESM1_ESM.docx (390 kb)
ESM 1 (DOCX 389 kb)

References

  1. Aydın Tekdaş D, Garifullin R, Şentürk B, Zorlu Y, Gundogdu U, Atalar E, Tekinay AB, Chernonosov AA, Yerli Y, Dumoulin F, Guler MO, Ahsen V, Gürek AG (2014) Design of a Gd-DOTA-phthalocyanine conjugate combining MRI contrast imaging and photosensitization properties as a potential molecular theranostic. Photochem Photobiol 90:1376–1386.  https://doi.org/10.1111/php.12332 CrossRefGoogle Scholar
  2. Boros E, Karimi S, Kenton N, Helm L, Caravan P (2014) Gd (DOTAlaP): exploring the boundaries of fast water exchange in gadolinium-based magnetic resonance imaging contrast agents. Inorg Chem 53:6985–6994.  https://doi.org/10.1021/ic5008928 CrossRefGoogle Scholar
  3. Botta M, Tei L (2012) Relaxivity enhancement in macromolecular and nanosized Gd III-based MRI contrast agents. Eur J Inorg Chem 2012:1945–1960.  https://doi.org/10.1002/ejic.201101305 CrossRefGoogle Scholar
  4. Britton J, Martynov AG, Oluwole DO, Gorbunova YG, Tsivadze AY, Nyokong T (2016) Improvement of nonlinear optical properties of phthalocyanine bearing diethyleneglycole chains: influence of symmetry lowering vs. heavy atom effect. J Porphyrins Phthalocyanines 20:1296–1305.  https://doi.org/10.1142/S1088424616501042 CrossRefGoogle Scholar
  5. Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC (2011) Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv Mater 23:2367–2371.  https://doi.org/10.1002/adma.201004554 CrossRefGoogle Scholar
  6. DIFFRAC (2005) Plus Evaluation package EVA, Version 11, User’s Manual, Bruker AXS, Karlsruhe, Germany, pр. 258. No TitleGoogle Scholar
  7. Elistratova J, Akhmadeev B, Gubaidullin A, Shestopalov MA, Solovieva A, Brylev K, Kholin K, Nizameev I, Ismaev I, Kadirov M, Mustafina A (2018) Structure optimization for enhanced luminescent and paramagnetic properties of hydrophilic nanomaterial based on heterometallic Gd-Re complexes. Mater Des 146:49–56.  https://doi.org/10.1016/j.matdes.2018.03.006 CrossRefGoogle Scholar
  8. Gao Z, Ma T, Zhao E, Docter D, Yang W, Stauber RH, Gao M (2016) Small is smarter: nano MRI contrast agents - advantages and recent achievements. Small 12:556–576.  https://doi.org/10.1002/smll.201502309 CrossRefGoogle Scholar
  9. Henoumont C, Laurent S, Vander Elst L (2009) How to perform accurate and reliable measurements of longitudinal and transverse relaxation times of MRI contrast media in aqueous solutions. Contrast Media Mol Imaging 4:312–321.  https://doi.org/10.1002/cmmi.294 CrossRefGoogle Scholar
  10. Hu F, Joshi HM, Dravid VP, Meade TJ (2010) High-performance nanostructured MR contrast probes. Nanoscale 2:1884–1891.  https://doi.org/10.1039/c0nr00173b CrossRefGoogle Scholar
  11. Iwase A, Tanaka K (1990) Synthesis and electrochemistry of acetylacetonatolanthanide(III)- phthalocyaninates. Electrochim Acta 35(11–12):1707–1712.  https://doi.org/10.1016/0013-4686(90)87069-E CrossRefGoogle Scholar
  12. Jiang J, Liu RCW, Mak TCW, Dominic Chan TW, Ng DKP (1997) Synthesis, spectroscopic and electrochemical properties of substituted bis(phthalocyaninato)lanthanide(III) complexes. Polyhedron 16(3):515–520.  https://doi.org/10.1016/0277-5387(96)00248-3 CrossRefGoogle Scholar
  13. Josefsen LB, Boyle RW (2012) Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2:916–966.  https://doi.org/10.7150/thno.4571 CrossRefGoogle Scholar
  14. Kataeva O, Khrizanforov M, Budnikova Y, Islamov D, Burganov T, Vandyukov A, Lyssenko K, Mahns B, Nohr M, Hampel S, Knupfer M (2016) Crystal growth, dynamic and charge transfer properties of new coronene charge transfer complexes. Cryst Growth Des 16:331–338.  https://doi.org/10.1021/acs.cgd.5b01301 CrossRefGoogle Scholar
  15. Khrizanforov MN, Arkhipova DM, Shekurov RP, Gerasimova TP, Ermolaev VV, Islamov DR, Miluykov VA, Kataeva ON, Khrizanforova VV, Sinyashin OG, Budnikova YH (2015) Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds. J Solid State Electrochem 19:2883–2890.  https://doi.org/10.1007/s10008-015-2901-0 CrossRefGoogle Scholar
  16. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) A Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282.  https://doi.org/10.1107/S0021889803012779 CrossRefGoogle Scholar
  17. Kadish KM, Smith KM, Guilard R (ed) (2003) The Porphyrin Handbook. Volume 16 / Phthalocyanines: Spectroscopic and Electrochemical characterization. Elsevier Science (USA). ISBN 0-12-393220-3.Google Scholar
  18. Lapkina LA, Larchenko VE, Tolkacheva EO et al (1998) Tetracrown-substituted lutetium (III) monophthalocyanines. Russ J Inorg Chem 43:901–909Google Scholar
  19. Lee A, Kim D, Choi S-H, Park JW, Jaung JY, Jung DH (2010) Theoretical study on phthalocyanine, pyrazinoporphyrazine and their complexation with Mg 2+ and Zn 2+. Mol Simul 36:192–198.  https://doi.org/10.1080/08927020903177641 CrossRefGoogle Scholar
  20. Martynov AG, Gorbunova YG (2007) Heteroleptic phthalocyaninato-[tetra(15-crown-5)phthalocyaninato] lanthanides (III) double-deckers: synthesis and cation-induced supramolecular dimerisation. Inorg Chim Acta 360:122–130.  https://doi.org/10.1016/j.ica.2006.07.078 CrossRefGoogle Scholar
  21. Meerovich IG, Gulyaev MV, Meerovich GA, Meerovich GA, Belov MS, Derkacheva VM, Dolotova OV, Loschenov VB, Baryshnikov AY, Pirogov YA (2015) Study of phthalocyanine derivatives as contrast agents for magnetic resonance imaging. Russ J Gen Chem 85:333–337.  https://doi.org/10.1134/S1070363215010478 CrossRefGoogle Scholar
  22. Mustafina A, Zairov R, Gruner M, Ibragimova A, Tatarinov D, Nizameyev I, Nastapova N, Yanilkin V, Kadirov M, Mironov V, Konovalov A (2011) Synthesis and photophysical properties of colloids fabricated by the layer-by-layer polyelectrolyte assembly onto Eu (III) complex as a core. Colloids Surf B: Biointerfaces 88:490–496.  https://doi.org/10.1016/j.colsurfb.2011.07.039 CrossRefGoogle Scholar
  23. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148.  https://doi.org/10.1002/adma.200802366 CrossRefGoogle Scholar
  24. Nefedova IV, Gorbunova YG, Sakharov SG, Tsivadze AY (2005) Synthesis and spectroscopic study of terbium (III) and neodymium (III) complexes with tetra-15-crown-5-phthalocyanine. Russ J Inorg Chem 50Google Scholar
  25. Oluwole DO, Yagodin AV, Mkhize NC, Sekhosana KE, Martynov AG, Gorbunova YG, Tsivadze AY, Nyokong T (2017) First example of nonlinear optical materials based on nanoconjugates of sandwich phthalocyanines with quantum dots. Chem Eur J 23:2820–2830.  https://doi.org/10.1002/chem.201604401 CrossRefGoogle Scholar
  26. Perrier M, Kenouche S, Long J, Thangavel K, Larionova J, Goze-Bac C, Lascialfari A, Mariani M, Baril N, Guérin C, Donnadieu B, Trifonov A, Guari Y (2013) Investigation on NMR relaxivity of nano-sized cyano-bridged coordination polymers. Inorg Chem 52:13402–13414.  https://doi.org/10.1021/ic401710j CrossRefGoogle Scholar
  27. Pinto SMA, Tomé VA, Calvete MJF, Pereira MM, Burrows HD, Cardoso AMS, Pallier A, C.A. Castro MM, Tóth É, Geraldes CFGC (2016) The quest for biocompatible phthalocyanines for molecular imaging: photophysics, relaxometry and cytotoxicity studies. J Inorg Biochem 154:50–59.  https://doi.org/10.1016/j.jinorgbio.2015.10.013 CrossRefGoogle Scholar
  28. Rodriguez-Mendez ML, Aroca R, DeSaja JA (1992) Electrochromic properties of Langmuir-Blodgett films of bisphthalocyanine complexes of rare earth elements. Chem Mater 4:1017–1020.  https://doi.org/10.1021/cm00023a018 CrossRefGoogle Scholar
  29. Schühle DT, Caravan P (2013) Metal-Based MRI Contrast AgentsGoogle Scholar
  30. Selektor SL, Shokurov AV, Arslanov VV, Gorbunova YG, Birin KP, Raitman OA, Morote F, Cohen-Bouhacina T, Grauby-Heywang C, Tsivadze AY (2014) Orientation-induced redox isomerism in planar supramolecular systems. J Phys Chem C 118:4250–4258.  https://doi.org/10.1021/jp411936k CrossRefGoogle Scholar
  31. Shahbazi-Gahrouei D (2006) Gadolinium-porphyrins: new potential magnetic resonance imaging contrast agents for melanoma detection. J Res Med Sci 11:217–223Google Scholar
  32. Shamsutdinova NA, Gubaidullin AT, Odintsov BM, Larsen RJ, Schepkin VD, Nizameev IR, Amirov RR, Zairov RR, Sudakova SN, Podyachev SN, Mustafina AR, Stepanov AS (2016) Polyelectrolyte-stabilized nanotemplates based on Gd(III) complexes with macrocyclic Tetra-1,3-diketones as a positive MR contrast agents. ChemistrySelect 1:1377–1383.  https://doi.org/10.1002/slct.201600223 CrossRefGoogle Scholar
  33. Shokrollahi H (2013) Contrast agents for MRI. Mater Sci Eng C 33:4485–4497.  https://doi.org/10.1016/j.msec.2013.07.012 CrossRefGoogle Scholar
  34. Small Angle X-ray Scattering. Version 4.0. Software Reference Manual, M86-E00005-0600. Bruker AXS Inc. (2000)Google Scholar
  35. Sour A, Jenni S, Ortí-Suárez A, Schmitt J, Heitz V, Bolze F, Loureiro de Sousa P, Po C, Bonnet CS, Pallier A, Tóth É, Ventura B (2016) Four gadolinium (III) complexes appended to a porphyrin: a water-soluble molecular theranostic agent with remarkable relaxivity suited for MRI tracking of the photosensitizer. Inorg Chem 55:4545–4554.  https://doi.org/10.1021/acs.inorgchem.6b00381 CrossRefGoogle Scholar
  36. Stepanov A, Nizameev I, Amirov R, Kleshnina S, Khakimullina G, Solovieva S, Voloshina A, Strobykina A, Gubaidullin A, Nugmanov R, Mustafina A (2017) Alkyl-malonate-substituted thiacalix[4] arenes as ligands for bottom-up design of paramagnetic Gd(III)-containing colloids with low cytotoxicity. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.05.017
  37. TOPAS V3: General profile and structure analysis software for powder diffraction data. Technical Reference. Bruker AXS. Karlsruhe. Germany (2005), pр 117Google Scholar
  38. UMD, UTK, NIST, ORNL, ISIS, ESS and ILL 2009Google Scholar
  39. Wang H, Wang BW, Bian Y, Gao S, Jiang J (2016) Single-molecule magnetism of tetrapyrrole lanthanide compounds with sandwich multiple-decker structures. Coord Chem Rev 306:195–216.  https://doi.org/10.1016/j.ccr.2015.07.004 CrossRefGoogle Scholar
  40. Zairov R, Zhilkin M, Mustafina A, Nizameev I, Tatarinov D, Konovalov A (2015) Impact of polyelectrolyte coating in fluorescent response of Eu (III)-containing nanoparticles on small chelating anions including nucleotides. Surf Coatings Technol 271:242–246.  https://doi.org/10.1016/j.surfcoat.2014.11.076 CrossRefGoogle Scholar
  41. Zairov R, Khakimullina G, Podyachev S, Nizameev I, Safiullin G, Amirov R, Vomiero A, Mustafina A (2017) Hydration number: crucial role in nuclear magnetic relaxivity of Gd(III) chelate-based nanoparticles. Sci Rep 7:1–10.  https://doi.org/10.1038/s41598-017-14409-6 CrossRefGoogle Scholar
  42. Zang L, Zhao H, Hua J, Qin F, Zheng Y, Zhang Z, Cao W (2017) Water-soluble gadolinium porphyrin as a multifunctional theranostic agent: phosphorescence-based oxygen sensing and photosensitivity. Dyes Pigments 142:465–471.  https://doi.org/10.1016/j.dyepig.2017.03.056 CrossRefGoogle Scholar
  43. Zhang Y, Lovell JF (2017) Recent applications of phthalocyanines and naphthalocyanines for imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:e1420.  https://doi.org/10.1002/wnan.1420 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Rustem R. Zairov
    • 1
    • 2
    Email author return OK on get
  • Alexey V. Yagodin
    • 3
  • Mikhail Khrizanforov
    • 1
  • Alexander G. Martynov
    • 3
  • Irek R. Nizameev
    • 1
    • 4
  • Victor V. Syakaev
    • 1
  • Aidar T. Gubaidullin
    • 1
  • Timur Kornev
    • 2
  • Ondrej Kaman
    • 5
  • Yulia H. Budnikova
    • 1
  • Yulia G. Gorbunova
    • 3
    • 6
  • Asiya R. Mustafina
    • 1
  1. 1.FRC Kazan Scientific Center of RASArbuzov Institute of Organic and Physical ChemistryKazanRussian Federation
  2. 2.Kazan (Volga region) Federal UniversityKazanRussian Federation
  3. 3.A.N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of sciencesMoscowRussia
  4. 4.Kazan National Research Technical University named after A.N. Tupolev - KAIKazanRussia
  5. 5.Institute of PhysicsCzech Academy of SciencesPraha 6Czech Republic
  6. 6.N.S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations