Advertisement

Benthic microbial fuel cell equipped with a photocatalytic Cu2O-coated cathode

  • Yuhong Jia
  • Dandan Zhang
  • Hong YouEmail author
  • Weiguo Li
  • Kun Jiang
Research Paper
  • 99 Downloads

Abstract

In this study, a photocatalytic benthic microbial fuel cell was developed and the cell performance was tested. A photocathode was fabricated by electrodeposition of Cu2O photocatalysts on carbon felt; with a proper deposition time of 15 min, a photocathode with optimal Cu2O compactness and an average Cu2O particle size of 0.97 μm was fabricated and was then covered with an amorphous carbon thin layer. Photoelectrochemical test results prove the pronounced visible light response of the fabricated photocathode. Results show that the coating of carbon thin layer could protect the Cu2O from self-reduction and also improve the photoelectrochemical performance of Cu2O crystalline grains. The photo-benthic microbial fuel cell (BMFC) produces a maximum power density of 249.0 mW m−2 and 186.7 mW m−2 under light irradiation and in the dark, which is 17.8 and 13.3 times higher than the common BMFC using carbon felt cathode in parallel, demonstrating the catalytic and photocatalytic effect of the fabricated photocathode. Polarization and EIS results prove the decrease of internal resistance by using the photocathode. The fabricated photocathode could improve the oxygen reduction rate on the cathode side, thus reduce the internal resistance and enhance the BMFC performance.

Keywords

Benthic microbial fuel cells Cu2Photocathode Visible light Nanostructured catalyst 

Notes

Funding information

This study received funding from the State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology, China (No 2016DX12), the China Postdoctoral Science Foundation (2014M551257).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amano F, Ebina T, Ohtani B (2014) Enhancement of photocathodic stability of p-type copper(I) oxide electrodes by surface etching treatment. Thin Solid Films 550:340–346CrossRefGoogle Scholar
  2. Ba X, Yan LL, Huang S, Yu J, Xia XJ, Yu Y (2014) New way for CO2 reduction under visible light by a combination of a Cu electrode and semiconductor thin film: Cu2O conduction type and morphology effect. J Phys Chem C 118:24467–24478CrossRefGoogle Scholar
  3. Chen Q, Liu J, Liu Y, Wang Y (2013) Hydrogen production on TiO2 nanorod arrays cathode coupling with bio-anode with additional electricity generation. J Power Sources 238:345–349CrossRefGoogle Scholar
  4. Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369CrossRefGoogle Scholar
  5. Ding H, Li Y, Lu A, Jin S, Quan C, Wang C, Wang X, Zeng C, Yan Y (2010) Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour Technol 101:3500–3505CrossRefGoogle Scholar
  6. Du Y, Feng Y, Qu Y, Liu J, Ren N, Liu H (2014) Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell. Environ Sci Technol 48:7634–7641CrossRefGoogle Scholar
  7. Hu L, Ju Y, Chen M, Hosoi A, Arai S (2014) Growth of Cu2O flower/grass-like nanoarchitectures and their photovoltaic effects. Appl Surf Sci 305:710–715CrossRefGoogle Scholar
  8. Kim T, Oh H, Ryu H, Lee W (2014) The study of post annealing effect on Cu2O thin-films by electrochemical deposition for photoelectrochemical applications. J Alloy Compd 612:74–79CrossRefGoogle Scholar
  9. Li WW, Yu HQ (2015) Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol Adv 33:1–12CrossRefGoogle Scholar
  10. Li Y, Lu A, Ding H, Jin S, Yan Y, Wang C, Zen C, Wang X (2009) Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Commun 11:1496–1499CrossRefGoogle Scholar
  11. Liang D, Han G, Zhang Y, Rao S, Lu S, Wang H, Xiang Y (2016) Efficient H2 production in a microbial photoelectrochemical cell with a composite Cu2O/NiOx photocathode under visible light. Appl Energy 168:544–549CrossRefGoogle Scholar
  12. Liang D, Liu Y, Peng S, Lan F, Lu S, Xiang Y (2013) Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell. Front Env Sci Eng 8:624–630CrossRefGoogle Scholar
  13. Lin C, Lai Y, Mersch D, Reisner E (2012) Cu2O/NiOx nanocomposite as an inexpensive photocathode for photoelectrochemical water splitting. Chem Sci 3:3482–3487CrossRefGoogle Scholar
  14. Lu A, Li Y, Jin S, Ding H, Zeng C, Wang X, Wang C (2010) Microbial fuel cell equipped with a photocatalytic rutile-coated cathode. Energ Fuels 24:1184–1190CrossRefGoogle Scholar
  15. Lu A, Li Y, Lv M, Wang C, Yang L, Liu J, Wang Y, Wong KH, Wong PK (2007) Photocatalytic oxidation of methyl orange by natural V-bearing rutile under visible light. Sol Energy Mater Sol Cells 91:1849–1855CrossRefGoogle Scholar
  16. Nishikawa M, Fukuda M, Nakabayashi Y, Saito N, Ogawa N, Nakajima T, Shinoda K, Tsuchiya T, Nosaka Y (2016) A method to give chemically stabilities of photoelectrodes for water splitting: compositing of a highly crystalized TiO2 layer on a chemically unstable Cu2O photocathode using laser-induced crystallization process. Appl Surf Sci 363:173–180CrossRefGoogle Scholar
  17. Paracchino A, Laporte V, Sivula K, Gratzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461CrossRefGoogle Scholar
  18. Qian F, Wang G, Li Y (2010) Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett 10:4686–4691CrossRefGoogle Scholar
  19. Reimers CE, Girguis P, Stecher HA III, Tender LM, Ryckelynck N, Whaling P (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4:123–136CrossRefGoogle Scholar
  20. Shao F, Hernández-Ramírez F, Prades JD, Fàbrega C, Andreu T, Morante JR (2014) Copper (II) oxide nanowires for p-type conductometric NH3 sensing. Appl Surf Sci 311:177–181CrossRefGoogle Scholar
  21. Shi W, Zhang X, Li S, Zhang B, Wang M, Shen Y (2015) Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity. Appl Surf Sci 358:404–411CrossRefGoogle Scholar
  22. Sowers KL, Fillinger A (2009) Crystal face dependence of p-Cu2O stability as photocathode. J Electrochem Soc 156:F80–F85CrossRefGoogle Scholar
  23. Sun Z, Cao R, Huang M, Chen D, Zheng W, Lin L (2015) Effect of light irradiation on the photoelectricity performance of microbial fuel cell with a copper oxide nanowire photocathode. J Photochem Photobiol A Chem 300:38–43CrossRefGoogle Scholar
  24. Tender LM, Reimers CE, Stecher HA III, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825CrossRefGoogle Scholar
  25. Wang Y, Wang B, Liu Y, Chen Q (2013) Electricity and hydrogen co-production from a bio-electrochemical cell with acetate substrate. Int J Hydrog Energy 38:6600–6606CrossRefGoogle Scholar
  26. Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106:528–536CrossRefGoogle Scholar
  27. Wu H, Lee S, Lu W, Chang K (2015) Piezoresistive effects enhanced the photocatalytic properties of Cu2O/CuO nanorods. Appl Surf Sci 344:236–241CrossRefGoogle Scholar
  28. Xie S, Lu X, Zhai T, Li W, Yu M, Liang C, Tong Y (2012) Enhanced photoactivity and stability of carbon and nitrogen co-treated ZnO nanorod arrays for photoelectrochemical water splitting. J Mater Chem 22:14272–14275CrossRefGoogle Scholar
  29. Yang C, Tran PD, Boix PP, Bassi PS, Yantara N, Wong LH, Barber J (2014) Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water. Nanoscale 6:6506–6510CrossRefGoogle Scholar
  30. Zhang M, Yuan S, Wang Z, Zhao Y, Shi L (2013a) Photoelectrocatalytic properties of Cu2+-doped TiO2 film under visible light. Appl Catal B Environ 134-135:185–192CrossRefGoogle Scholar
  31. Zhang Z, Dua R, Zhang L, Zhu H, Zhang H, PengWang (2013b) Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 7:1709–1717Google Scholar
  32. Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yuhong Jia
    • 1
    • 2
  • Dandan Zhang
    • 2
  • Hong You
    • 1
    Email author
  • Weiguo Li
    • 2
  • Kun Jiang
    • 2
  1. 1.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.School of Marine Science and TechnologyHarbin Institute of Technology at WeihaiWeihaiPeople’s Republic of China

Personalised recommendations