Advertisement

UV photodetector based on polycrystalline SnO2 nanotubes by electrospinning with enhanced performance

  • Yaohua Li
  • Wenxiu Huang
  • Hui LiuEmail author
  • Jinshou Wang
  • Li Tian
  • Shenghui Zhang
Research Paper
  • 119 Downloads

Abstract

UV (ultraviolet) photodetectors with high performance have a wide range of applications such as environmental monitoring and water sterilization. Herein, we have demonstrated that the visible-blind UV photodetectors based on polycrystalline SnO2 nanotubes by electrospinning combined the advantages of low dark current and high photocurrent-to-dark current ratio. The optimized photodetector based on SnO2 nanotube film showed a strong rise in current amplitude; the photocurrent was 25.60 nA, about 850 times larger than the dark current of 0.03 nA, under a voltage as small as 1.0 V and 320 nm illumination at 75 μW/cm2. In addition, these devices presented improved characteristic on time responses. Investigations indicated that the features of high signal-to-noise ratio and relatively fast response speed are strongly relied upon the band-edge modulation along the axial direction of nanotube, where Schottky barriers are formed among the grain interfaces of polycrystalline SnO2 nanoparticles, together with the processes of oxygen adsorption/desorption in air. These results suggest that the polycrystalline SnO2 nanotube is a potential candidate for the fabrication of photodetector with low cost and high performance.

Keywords

SnO2 nanotube Polycrystalline Photodetector Electrospinning Sensors 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (nos. 21361009, 21363007, and 21175033) and the Foundation for PhD of Hubei University for Nationalities (MY2015B022, MY2015B023).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahn SE, Lee JS, Kim H, Kim S, Kang BH, Kang HK, Kim GT (2004) Photoresponse of sol-gel-synthesized ZnO nanorods. Appl Phys Lett 84:5022–5024.  https://doi.org/10.1063/1.1763633 CrossRefGoogle Scholar
  2. Barbagiovanni EG, Strano V, Franzò G, Mirabella S (2016) The role of Zn vacancies in UV sensing with ZnO nanorods. Appl Phys Lett 109:10482–10484.  https://doi.org/10.1063/1.4963890 CrossRefGoogle Scholar
  3. Bulemo PM, Cho HJ, Kim NH, Kim ID (2017) Mesoporous SnO2 nanotubes via electrospinning-etching route: highly sensitive and selective detection of H2S molecule. ACS Appl Mater Interfaces 9:26304–26313.  https://doi.org/10.1021/acsami.7b05241 CrossRefGoogle Scholar
  4. Chen H, Hu LF, Fang XS, Wu LM (2012) General fabrication of monolayer SnO2 nanonets for high-performance ultraviolet photodetectors. Adv Funct Mater 22:1229–1235.  https://doi.org/10.1002/adfm.201102506 CrossRefGoogle Scholar
  5. Chen HY, Liu KW, Hu LF, Al-Ghamdi AA, Fang XS (2015) New concept ultraviolet photodetectors. Mater Today 18:493–502.  https://doi.org/10.1016/j.mattod.2015.06.001 CrossRefGoogle Scholar
  6. Chen HY, Liu H, Zhang ZM, Hu K, Fang XS (2016) Nanostructured photodetectors: from ultraviolet to terahertz. Adv Mater 28:403–433.  https://doi.org/10.1002/adma.201503534 CrossRefGoogle Scholar
  7. Chen MX, Zhao B, Hu GF, Fang XS, Wang H, Wang L, Luo J, Han X, Wang XD, Pan CF (2018) Piezo-phototronic effect modulated deep UV photodetector based on ZnO-Ga2O3 heterojuction microwire. Adv Funct Mater 1706379.  https://doi.org/10.1002/adfm.201706379
  8. Das S, Jayaraman V (2014) SnO2: a comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255.  https://doi.org/10.1016/j.pmatsci.2014.06.003 CrossRefGoogle Scholar
  9. Deng K, Lu H, Shi Z, Liu Q, Li L (2013) Flexible three-dimensional SnO2 nanowire arrays: atomic layer deposition-assisted synthesis, excellent photodetectors, and field emitters. ACS Appl Mater Interfaces 5:7845–7851.  https://doi.org/10.1021/am401762y CrossRefGoogle Scholar
  10. Fang XS, Hu LF, Huo KF, Gao B, Zhao LJ, Liao MY, Chu PK, Bando Y, Golberg D (2011) New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv Funct Mater 21:3907–3915.  https://doi.org/10.1002/adfm.201100743 CrossRefGoogle Scholar
  11. Fang XS, Yan J, Hu LF, Liu H, Lee PS (2012) Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Adv Funct Mater 22:1613–1622.  https://doi.org/10.1002/adfm.201102196 CrossRefGoogle Scholar
  12. Gan L, Liao MY, Li HQ, Ma Y, Zhai TY (2015) Geometry-induced high performance ultraviolet photodetectors in kinked SnO2 nanowires. J Mater Chem C 3:8300–8306.  https://doi.org/10.1039/C5TC01178G CrossRefGoogle Scholar
  13. Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y, Huang J (2012) A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat Nanotechnol 7:798–802.  https://doi.org/10.1038/NNANO.2012.187 CrossRefGoogle Scholar
  14. Hossain FM, Nishii J, Takagi S, Ohtomo A, Fukumura T, Fujioka H, Ohno H, Koinuma H, Kawasaki M (2003) Modeling and simulation of polycrystalline ZnO thin-film transistors. J Appl Phys 94:7768–7777.  https://doi.org/10.1063/1.1628834 CrossRefGoogle Scholar
  15. Hossain FM, Nishii J, Takagi S, Sugihara T, Ohtomo A, Fukumura T, Koinuma H, Ohno H, Kawasaki M (2004) Modeling of grain boundary barrier modulation in ZnO invisible thin film transistors. Phys E 21:911–915.  https://doi.org/10.1016/j.physe.2003.11.149 CrossRefGoogle Scholar
  16. Hou X, Wang X, Liu B, Wang Q, Wang Z, Chen D, Shen G (2014) SnO2@TiO2 heterojunction nanostructures for lithium-ion batteries and self-powered UV photodetectors with improved performances. ChemElectroChem 1:108–115.  https://doi.org/10.1002/celc.201300053 CrossRefGoogle Scholar
  17. Hu Y, Zhou J, Yeh PH, Li Z, Wei T-Y, Wang ZL (2010) Supersensitive, fast-response nanowire sensors by using Schottky contacts. Adv Mater 22:3327–3332.  https://doi.org/10.1002/adma.201000278 CrossRefGoogle Scholar
  18. Hu LF, Yan J, Liao MY, Wu LM, Fang XS (2011) Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. Small 7:1012–1017.  https://doi.org/10.1002/smll.201002379 CrossRefGoogle Scholar
  19. Huang Y, Lin J, Li L, Xu L, Wang WJ, Zhang J, Xu XW, Zou J, Tang CC (2015) High performance UV light photodetectors based on Sn-nanodot-embedded SnO2 nanobelts. J Mater Chem C 3:5253–5258.  https://doi.org/10.1039/C5TC00453E CrossRefGoogle Scholar
  20. Khan A, Balakrishnan K, Katona T (2008) Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics 2:77–84.  https://doi.org/10.1038/nphoton.2007.293 CrossRefGoogle Scholar
  21. Kuang Q, Lao CS, Li Z, Liu YZ, Xie ZX, Zheng LS, Wang ZL (2008) Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J Phys Chem C 112:11539–11544.  https://doi.org/10.1021/jp802880c CrossRefGoogle Scholar
  22. Lähnemann J, Den Hertog M, Hille P, de la Mata MA, Fournier T, Schörmann J, Arbiol J, Eickhoff M, Monroy E (2016) UV photosensing characteristics of nanowire-based GaN/AlN superlattices. Nano Lett 16:3260–3267.  https://doi.org/10.1021/acs.nanolett.6b00806 CrossRefGoogle Scholar
  23. Li L, Auer E, Liao MY, Fang XS, Zhai TY, Gautam UK, Lugstein A, Koide Y, Bando Y, Golberg D (2011) Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale 3:1120–1126.  https://doi.org/10.1039/c0nr00702a CrossRefGoogle Scholar
  24. Li X, Gao C, Duan H, Lu B, Wang Y, Chen L, Zhang Z, Pan X, Xie E (2013) High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure. Small 9:2005–2011.  https://doi.org/10.1002/smll.201202408 CrossRefGoogle Scholar
  25. Li YM, Song Y, Jiang YC, Hu MX, Pan ZC, Xu XJ, Chen HY, Li YS, Hu LF, Fang XS (2017) Optoelectronic devices: solution-growth strategy for large-scale “CuGaO2 nanoplate/ZnS microsphere” heterostructure arrays with enhanced UV adsorption and optoelectronic properties. Adv Funct Mater 27:1701066–1701075.  https://doi.org/10.1002/adfm.201770140 CrossRefGoogle Scholar
  26. Limiao L, Xiaoming Y, Shuang L, Yanguo W, Libao C, Taihong W (2010) Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem Commun 12:1383–1386.  https://doi.org/10.1016/j.elecom.2010.07.026 CrossRefGoogle Scholar
  27. Lin CH, Chen RS, Chen TT, Chen HY, Chen YF, Chen KH, Chen LC (2008) High photocurrent gain in SnO2 nanowires. Appl Phys Lett 93:112115–112118.  https://doi.org/10.1063/1.2987422 CrossRefGoogle Scholar
  28. Liu H, Zhang ZM, Hu LF, Gao N, Sang LW, Liao MY, Ma RZ, Xu FF, Fang XS (2014a) New UV-A photodetector based on individual potassium niobate nanowires with high performance. Adv Opt Mater 2:771–778.  https://doi.org/10.1002/adom.201400176 CrossRefGoogle Scholar
  29. Liu X, Gu LL, Zhang QP, Wu JY, Long YZ, Fan ZY (2014b) All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun 5:4007–4015.  https://doi.org/10.1038/ncomms5007 CrossRefGoogle Scholar
  30. Monroy E, Omnes F, Calle F (2003) Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Technol 18:R33–R51.  https://doi.org/10.1088/0268-1242/18/4/201 CrossRefGoogle Scholar
  31. Ning Y, Zhang ZM, Feng T, Fang XS (2018) Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14:1703754.  https://doi.org/10.1002/smll.201703754 CrossRefGoogle Scholar
  32. Ouyang WX, Teng F, Fang XS (2018) High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets. Adv Funct Mater 1707178.  https://doi.org/10.1002/adfm.201707178
  33. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301–041406.  https://doi.org/10.1063/1.1992666 CrossRefGoogle Scholar
  34. Shi H, Cheng B, Cai Q, Su X, Xiao Y, Lei S (2016) Surface state controlled ultrahigh selectivity and sensitivity for UV photodetectors based on individual SnO2 nanowires. J Mater Chem C 4:8399–8406.  https://doi.org/10.1039/C6TC02420C CrossRefGoogle Scholar
  35. Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7:1003–1009.  https://doi.org/10.1021/Nl070111x CrossRefGoogle Scholar
  36. Spies M, den Hertog MI, Hille P, Schörmann J, Polaczyński J, Gayral B, Eickhoff M, Monroy E, Lähnemann J (2017) Bias-controlled spectral response in GaN/AlN single-nanowire ultraviolet photodetectors. Nano Lett 17:4231–4239.  https://doi.org/10.1021/acs.nanolett.7b01118 CrossRefGoogle Scholar
  37. Su LX, Yang W, Cai J, Chen HY, Fang XS (2017) Self-powered ultraviolet photodetectors driven by built-in electric field. Small 13:1701687–1701696.  https://doi.org/10.1002/smll.201701687 CrossRefGoogle Scholar
  38. Tang R, Han S, Teng F, Hu K, Zhang ZM, Hu M, Fang XS (2018) Size-controlled graphene nanodot arrays/ZnO hybrids for high-performance UV photodetectors. Adv Sci 5:1700334.  https://doi.org/10.1002/advs.201700334 CrossRefGoogle Scholar
  39. Teng F, Hu K, Ouyang WX, Fang XS (2018) Photoelectric detectors based on inorganic p-type semiconductor materials. Adv Mater 30:1706262.  https://doi.org/10.1002/adma.201706262 CrossRefGoogle Scholar
  40. Tian W, Zhi CY, Zhai TY, Chen SM, Wang X, Liao MY, Golberg D, Bando Y (2012) In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse. J Mater Chem 22:17984–17991.  https://doi.org/10.1039/C2jm33189f CrossRefGoogle Scholar
  41. Tian W, Zhai TY, Zhang C, Li SL, Wang X, Liu F, Liu DQ, Cai XK, Tsukagoshi K, Golberg D, Bando Y (2013a) Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers. Adv Mater 25:4625–4630.  https://doi.org/10.1002/adma.201301828 CrossRefGoogle Scholar
  42. Tian W, Zhang C, Zhai TY, Li SL, Wang X, Liao MY, Tsukagoshi K, Golberg D, Bando Y (2013b) Flexible SnO2 hollow nanosphere film based high-performance ultraviolet photodetector. Chem Commun 49:3739–3741.  https://doi.org/10.1039/C3cc39273b CrossRefGoogle Scholar
  43. Tian W, Zhang C, Zhai TY, Li SL, Wang X, Liu JW, Jie X, Liu DQ, Liao MY, Koide Y, Golberg D, Bando Y (2014) Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. Adv Mater 26:3088–3093.  https://doi.org/10.1002/adma.201305457 CrossRefGoogle Scholar
  44. Wu JM, Kuo CH (2009) Ultraviolet photodetectors made from SnO2 nanowires. Thin Solid Films 517:3870–3873.  https://doi.org/10.1016/j.tsf.2009.01.120 CrossRefGoogle Scholar
  45. Wu J, Zeng D, Wang X, Zeng L, Huang Q, Tang G, Xie C (2014) Mechanistic insights into formation of SnO2 nanotubes: asynchronous decomposition of poly(vinylpyrrolidone) in electrospun fibers during calcining process. Langmuir 30:11183–11189.  https://doi.org/10.1021/la5017559 CrossRefGoogle Scholar
  46. Xu XJ, Shukla S, Liu Y, Yue B, Bullock J, Su LX, Li YM, Javey A, Fang XS, Ager Joel W (2017) Solution-processed transparent self-powered p-CuS-ZnS/n-ZnO UV photodiode. Phys Status Solidi (RRL) 12:1700381.  https://doi.org/10.1002/pssr.201700381 CrossRefGoogle Scholar
  47. Xu JZ, Yang W, Chen HY, Zheng LX, Hu MX, Li YM, Fang XS (2018) Efficiency enhancement of TiO2 self-powered UV photodetectors using transparent Ag nanowires electrode. J Mater Chem C 6:3334–3340.  https://doi.org/10.1039/c8tc00550h CrossRefGoogle Scholar
  48. Yang W, Hu K, Teng F, Weng JH, Zhang Y, Fang XS (2018) High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett 18:4697–4703.  https://doi.org/10.1021/acs.nanolett.8b00988 CrossRefGoogle Scholar
  49. Zhang DH (1999) Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering. J Phys D Appl Phys 28:1273–1277.  https://doi.org/10.1088/0022-3727/28/6/034 CrossRefGoogle Scholar
  50. Zhao B, Wang F, Chen HY, Wang YP, Jiang MM, Fang XS, Zhao DX (2015) Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett 15:3988–3993.  https://doi.org/10.1021/acs.nanolett.5b00906 CrossRefGoogle Scholar
  51. Zhao B, Wang F, Chen HY, Zheng LX, Su LX, Zhao DX, Fang XS (2017) An ultrahigh responsivity (9.7 mA W−1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures. Adv Funct Mater 27:1700264–1700271.  https://doi.org/10.1002/adfm.201700264 CrossRefGoogle Scholar
  52. Zheng LX, Han SC, Liu H, Yu PP, Fang XS (2016) Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12:1527–1536.  https://doi.org/10.1002/smll.201503441 CrossRefGoogle Scholar
  53. Zheng LX, Hu K, Teng F, Fang XS (2017a) Novel UV-visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction. Small 13:1602448–1602458.  https://doi.org/10.1002/smll.201602448 CrossRefGoogle Scholar
  54. Zheng Z, Zhuge FW, Wang YG, Zhang JB, Gan L, Zhou X, Li HQ, Zhai TY (2017b) Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv Funct Mater 27:1703115–1703126.  https://doi.org/10.1002/adfm.201703115 CrossRefGoogle Scholar
  55. Zhu Y, Liu K, Wang X, Yang J, Chen X, Xie X, Li B, Shen D (2017) Performance improvement of a ZnMgO ultraviolet detector by chemical treatment with hydrogen peroxide. J Mater Chem C 5:7598–7603.  https://doi.org/10.1039/C7TC02425H CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryHubei University for NationalitiesEnshiChina
  2. 2.Hubei Key Laboratory of Biological Resources Protection and UtilizationHubei University for NationalitiesEnshiChina

Personalised recommendations