Lysosome mediates toxicological effects of polyethyleneimine-based cationic carbon dots

  • Carole Ronzani
  • Camille Van Belle
  • Pascal Didier
  • Coralie Spiegelhalter
  • Philippe Pierrat
  • Luc Lebeau
  • Françoise PonsEmail author
Research Paper


Cationic carbon dots (CDs) have been recently described as nucleic acid carriers with high in vitro and in vivo transfection efficiency and imaging properties. However, developing nanoparticles (NPs) for biomedical applications requires assessing their safety. In the present study, we characterized the cell uptake and trafficking, as well as the cell viability loss, oxidative stress, inflammation, and mitochondrial and lysosomal perturbations evoked by cationic CDs prepared by microwave-assisted pyrolysis of citric acid and high molecular weight branched polyethyleneimine (bPEI25k), using THP-1-derived macrophages. CDs were rapidly internalized by cells and addressed to the lysosomes after their cell entry. The NPs induced a dose- and time-dependent loss in cell viability that was associated with oxidative stress and IL-8 release. The CDs triggered also a dose-dependent loss in lysosome integrity, mitochondrial dysfunction, and NLRP3 inflammasome activation. Inhibition of the lysosomal protease cathepsin B significantly reduced CD-induced mitochondrial dysfunction and NLRP3 inflammasome activation, suggesting a pivotal role of the lysosome in the toxicological effects of the NPs. Our study provides for the first time a mechanistic pathway for the toxicological effects of bPEI25k-based cationic CDs.


Nanoparticles Carbon dots Nanotoxicology Lysosome Oxidative stress Inflammation Health effects 



This work was supported by the agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (ANSES - Grant n° EST-2015/1/005).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437CrossRefGoogle Scholar
  2. Blas-Garcia A, Baldovi HG, Polo M, Victor VM, Garcia H, Herance JR (2016) Toxicological properties of two fluorescent carbon quantum dots with onion ring morphology and their usefulness as bioimaging agents. RSC Adv 6:30611–30622CrossRefGoogle Scholar
  3. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301CrossRefGoogle Scholar
  4. Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451CrossRefGoogle Scholar
  5. Cailotto S, Amadio E, Facchin M, Selva M, Pontoglio E, Rizzolio F, Riello P, Toffoli G, Benedetti A, Perosa A (2018) Carbon dots from sugars and ascorbic acid: role of the precursors on morphology, properties, toxicity, and drug uptake. ACS Med Chem Lett 9:832–837CrossRefGoogle Scholar
  6. Cao X, Cao X, Wang J, Deng W, Chen J, Wang Y, Zhou J, Du P, Xu W, Wang Q, Wang Q, Yu Q, Spector M, Yu J, Xu X (2018) Photoluminescent cationic carbon dots as efficient non-viral delivery of plasmid SOX9 and chondrogenesis of fibroblasts. Sci Rep 8(1):7057CrossRefGoogle Scholar
  7. Cayuela A, Soriano ML, Carrillo-Carrion C, Valcarcel M (2016) Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem Commun 52:1311–1326CrossRefGoogle Scholar
  8. Collot M, Kreder R, Tatarets AL, Patsenker LD, Mely Y, Klymchenko AS (2015) Bright fluorogenic squaraines with tuned cell entry for selective imaging of plasma membrane vs. endoplasmic reticulum. Chem Commun 51:17136–17139CrossRefGoogle Scholar
  9. Das SK, Liu YY, Yeom S, Kim DY, Richards CI (2014) Single-particle fluorescence intensity fluctuations of carbon nanodots. Nano Lett 14:620–625CrossRefGoogle Scholar
  10. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677CrossRefGoogle Scholar
  11. Dou Q, Fang X, Jiang S, Chee PL, Lee T-C, Loh XJ (2015) Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Adv 5:46817–46822CrossRefGoogle Scholar
  12. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N (2014) Advanced methods of microscope control using μManager software. J Biol Methods 1(2):e10CrossRefGoogle Scholar
  13. Edison TNJI, Atchudan R, Sethuraman MG, Shim JJ, Lee YR (2016) Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. J Photochem Photobiol B 161:154–161CrossRefGoogle Scholar
  14. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287CrossRefGoogle Scholar
  15. Emam AN, Loutfy SA, Mostafa AA, Awad H, Mohamed MB (2017) Cytotoxicity, biocompatibility and cellular response of carbon dots-plasmonic based nano-hybrids for bioimaging. RSC Adv 7:23502–23514CrossRefGoogle Scholar
  16. Gomez IJ, Arnaiz B, Cacioppo M, Arcudi F, Prato M (2018) Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. J Mater Chem B 6:5540–5548CrossRefGoogle Scholar
  17. Hao AJ, Guo XJ, Wu Q, Sun Y, Cong CR, Liu WJ (2016) Exploring the interactions between polyethyleneimine modified fluorescent carbon dots and bovine serum albumin by spectroscopic methods. J Lumines 170:90–96CrossRefGoogle Scholar
  18. Havrdova M, Hola K, Skopalik J, Tomankova K, Martin PA, Cepe K, Polakova K, Tucek J, Bourlinos AB, Zboril R (2016) Toxicity of carbon dots—effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 99:238–248CrossRefGoogle Scholar
  19. Himaja AL, Karthik PS, Singh SP (2015) Carbon dots: the newest member of the carbon nanomaterials family. Chem Rec 15:595–615CrossRefGoogle Scholar
  20. Hosseinkhani H (2006) DNA nanoparticles for gene delivery to cells and tissue. Int J Nanotechnol 3:416–461CrossRefGoogle Scholar
  21. Hou XF, Hu Y, Wang P, Yang LJ, Al Awak MM, Tang YG, Twara FK, Qian HJ, Sun YP (2017) Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon 122:389–394CrossRefGoogle Scholar
  22. Hu LM, Sun Y, Li SL, Wang XL, Hu KL, Wang LR, Liang XJ, Wu Y (2014) Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon 67:508–513CrossRefGoogle Scholar
  23. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260:142–149CrossRefGoogle Scholar
  24. Jiang CK, Wu H, Song XJ, Ma XJ, Wang JH, Tan MQ (2014) Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging. Talanta 127:68–74CrossRefGoogle Scholar
  25. Kim J, Chankeshwara SV, Thielbeer F, Jeong J, Donaldson K, Bradley M, Cho WS (2016) Surface charge determines the lung inflammogenicity: a study with polystyrene nanoparticles. Nanotoxicology 10:94–101CrossRefGoogle Scholar
  26. Kim S, Choi Y, Park G, Won C, Park YJ, Lee Y, Kim BS, Min DH (2017) Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res 10:503–519CrossRefGoogle Scholar
  27. Kundu A, Lee J, Park B, Ray C, Sankar KV, Kim WS, Lee SH, Cho IJ, Jun SC (2018) Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imaging. J Colloid Interface Sci 513:505–514CrossRefGoogle Scholar
  28. Kwon W, Lee G, Do S, Joo T, Rhee SW (2014) Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small 10:506–513CrossRefGoogle Scholar
  29. Lategan K, Alghadi H, Bayati M, de Cortalezzi MF, Pool E (2018) Effects of graphene oxide nanoparticles on the immune system biomarkers produced by RAW 264.7 and human whole blood cell cultures. Nanomaterials (Basel) 8(2):125CrossRefGoogle Scholar
  30. Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, Lin S, Meng H, Liao YP, Wang M, Li Z, Hwang AA, Song TB, Xu R, Yang Y, Zink JI, Nel AE, Xia T (2013) Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7:2352–2368CrossRefGoogle Scholar
  31. Li S, Guo Z, Zhang Y, Xue W, Liu ZH (2015) Blood compatibility evaluations of fluorescent carbon dots. ACS Appl Mater Interfaces 7:19153–19162CrossRefGoogle Scholar
  32. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46(34):6473–6475CrossRefGoogle Scholar
  33. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33:3604–3613CrossRefGoogle Scholar
  34. Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, Yu L, Liang XJ (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5:8629–8639CrossRefGoogle Scholar
  35. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111(9):5610–5637CrossRefGoogle Scholar
  36. Manshian BB, Soenen SJ, Al-Ali A, Brown A, Hondow N, Wills J, Jenkins GJ, Doak SH (2015) Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints. Toxicol Sci 144:246–258CrossRefGoogle Scholar
  37. Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2011) Nanoparticles: molecular targets and cell signalling. Arch Toxicol 85:733–741CrossRefGoogle Scholar
  38. Marega R, Aroulmoji V, Dinon F, Vaccari L, Giordani S, Bianco A, Murano E, Prato M (2009) Diffusion-ordered NMR spectroscopy in the structural characterization of functionalized carbon nanotubes. J Am Chem Soc 131:9086–9093CrossRefGoogle Scholar
  39. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  40. Peeters PM, Eurlings IM, Perkins TN, Wouters EF, Schins RP, Borm PJ, Drommer W, Reynaert NL, Albrecht C (2014) Silica-induced NLRP3 inflammasome activation in vitro and in rat lungs. Part Fibre Toxicol 11:58CrossRefGoogle Scholar
  41. Pierrat P, Wang R, Kereselidze D, Lux M, Didier P, Kichler A, Pons F, Lebeau L (2015) Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials 51:290–302CrossRefGoogle Scholar
  42. Pretsch E, Bühlmann P, Affolter C (2000) Structure determination of organic compounds, 3rd edn. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  43. Qian J, Chen J, Ruan S, Shen S, He Q, Jiang X, Zhu J, Gao H (2014) Preparation and biological evaluation of photoluminescent carbonaceous nanospheres. J Colloid Interface Sci 429:77–82CrossRefGoogle Scholar
  44. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551CrossRefGoogle Scholar
  45. Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3(7):1125–1131CrossRefGoogle Scholar
  46. Repnik U, Hafner Cesen M, Turk B (2014) Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion 19:49–57CrossRefGoogle Scholar
  47. Ritz S, Schöttler S, Kotman N, Baier G, Musyanovych A, Kuharev J, Landfester K, Schild H, Jahn O, Tenzer S, Mailänder V (2015) Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16(4):1311–1321CrossRefGoogle Scholar
  48. Ronzani C, Spiegelhalter C, Vonesch JL, Lebeau L, Pons F (2012) Lung deposition and toxicological responses evoked by multi-walled carbon nanotubes dispersed in a synthetic lung surfactant in the mouse. Arch Toxicol 86:137–149CrossRefGoogle Scholar
  49. Sachdev A, Matai I, Gopinath P (2014) Implications of surface passivation on physicochemical and bioimaging properties of carbon dots. RSC Adv 4:20915–20921CrossRefGoogle Scholar
  50. Salieri B, Pasteris A, Netkueakul W, Hischier R (2017) Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial. J Nanopart Res 19(3):116CrossRefGoogle Scholar
  51. Schütz I, Lopez-Hernandez T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, Schmudde M, Rühl E, Graf CM, Haucke V (2016) Lysosomal dysfunction caused by cellular accumulation of silica nanoparticles. J Biol Chem 291:14170–14184CrossRefGoogle Scholar
  52. Shahbazi MA, Hamidi M, Mäkilä EM, Zhang H, Almeida PV, Kaasalainen M, Salonen JJ, Hirvonen JT, Santos HA (2013) The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 34:7776–7789CrossRefGoogle Scholar
  53. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343CrossRefGoogle Scholar
  54. Sk MP, Jaiswal A, Paul A, Ghosh SS, Chattopadhyay A (2012) Presence of amorphous carbon nanoparticles in food caramels. Sci Rep 2:383CrossRefGoogle Scholar
  55. Stefanakis D, Philippidis A, Sygellou L, Filippidis G, Ghanotakis D, Anglos D (2014) Synthesis of fluorescent carbon dots by a microwave heating process: structural characterization and cell imaging applications. J Nanopart Res 16(10):2646CrossRefGoogle Scholar
  56. Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20CrossRefGoogle Scholar
  57. Tahara Y, Nakamura M, Yang M, Zhang M, Iijima S, Yudasaka M (2012) Lysosomal membrane destabilization induced by high accumulation of single-walled carbon nanohorns in murine macrophage RAW 264.7. Biomaterials 33:2762–2769CrossRefGoogle Scholar
  58. Terrill RH, Postlethwaite TA Chen CH, Poon CD, Terzis A, Chen AD, Hutchison JE, Clark MR, Wignall G, Londono JD, Superfine R, Falvo M, Johnson CS, Samulski ET, Murray RW (1995) Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J Am Chem Soc 117:12537–12548CrossRefGoogle Scholar
  59. Tian RX, Hu SL, Wu LL, Chang Q, Yang JL, Liu J (2014) Tailoring surface groups of carbon quantum dots to improve photoluminescence behaviors. Appl Surf Sci 301:156–160CrossRefGoogle Scholar
  60. Wan B, Wang ZX, Lv QY, Dong PX, Zhao LX, Yang Y, Guo LH (2013) Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol Lett 221:118–127CrossRefGoogle Scholar
  61. Wang JL, Qiu JJ (2016) A review of carbon dots in biological applications. J Mater Sci 51:4728–4738CrossRefGoogle Scholar
  62. Wang Y, Anilkumar P, Cao L, Liu JH, Luo PG, Tackett KN 2nd, Sahu S, Wang P, Wang X, Sun YP (2011) Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging. Exp Biol Med 236:1231–1238CrossRefGoogle Scholar
  63. Wang K, Gao ZC, Gao G, Wo Y, Wang YX, Shen GX, Cui DX (2013) Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res Lett 8:122CrossRefGoogle Scholar
  64. Wang L, Wang X, Bhirde A, Cao J, Zeng Y, Huang X, Sun Y, Liu G, Chen X (2014) Carbon-dot-based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA. Adv Healthc Mater 3:1203–1209CrossRefGoogle Scholar
  65. Wu LL, Li XL, Ling YF, Huang CS, Jia NQ (2017) Morpholine derivative-functionalized carbon dots-based fluorescent probe for highly selective lysosomal imaging in living cells. ACS Appl Mater Interfaces 9:28222–28232CrossRefGoogle Scholar
  66. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96CrossRefGoogle Scholar
  67. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737CrossRefGoogle Scholar
  68. Yang ST, Wang X, Wang H, Lu F, Luo PG, Cao L, Meziani MJ, Liu JH, Liu Y, Chen M, Huang Y, Sun YP (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113:18110–18114CrossRefGoogle Scholar
  69. Yang X, Wang Y, Shen X, Su C, Yang J, Piao M, Jia F, Gao G, Zhang L, Lin Q (2017) One-step synthesis of photoluminescent carbon dots with excitation independent emission for selective bioimaging and gene delivery. J Colloid Interface Sci 492:1–7CrossRefGoogle Scholar
  70. Yuan Y, Guo B, Hao L, Liu N, Lin Y, Guo W, Li X, Gu B (2017) Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids Surf B 159:349–359CrossRefGoogle Scholar
  71. Zhang X, Wang Y, Liu W, Liang X, Si B, Liu E, Hu E, Fan J (2017) Facile preparation of surface functional carbon dots and their application in doxorubicin hydrochloride delivery. Mater Lett 209:360–364CrossRefGoogle Scholar
  72. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337CrossRefGoogle Scholar
  73. Zhou N, Zhu SJ, Maharjan S, Hao ZY, Song YB, Zhao XH, Jiang YF, Yang B, Lu LJ (2014) Elucidating the endocytosis, intracellular trafficking, and exocytosis of carbon dots in neural cells. RSC Adv 4:62086–62095Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Carole Ronzani
    • 1
  • Camille Van Belle
    • 1
  • Pascal Didier
    • 2
  • Coralie Spiegelhalter
    • 3
  • Philippe Pierrat
    • 1
  • Luc Lebeau
    • 1
  • Françoise Pons
    • 1
    Email author
  1. 1.Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de PharmacieCNRS-Université de StrasbourgIllkirchFrance
  2. 2.Laboratoire de Bioimagerie et Pathologies, UMR 7021, Faculté de PharmacieCNRS-Université de StrasbourgIllkirchFrance
  3. 3.Centre d’ImagerieInstitut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance

Personalised recommendations