Tuning Pt–Cu nanostructures by bromide ions and their superior electrocatalytic activities for methanol oxidation reaction

  • Ning Sui
  • Ke Wang
  • Qiang Bai
  • Lina WangEmail author
  • Tao Wang
  • Hailian Xiao
  • Manhong Liu
  • Vicki L. Colvin
  • Qingbo Zhang
  • William W. YuEmail author
Research Paper


Dendritic Pt–Cu nanoparticles were synthesized by a facile one-step method with the help of surfactant Brij58 at room temperature, and we also studied the effects of different Pt–Cu ratios on the morphology and size of nanoparticles. In addition, we further tuned the morphology of the Pt–Cu nanostructures by introducing bromide ions, eventually leading to the appearance of some tripod-like structures. Compared with dendritic Pt–Cu and commercial Pt black, these tripod-like Pt–Cu nanostructures exhibited higher electrocatalytic activity and CO tolerance for catalyzing methanol oxidation.

Graphical abstract


Nanoparticle Bromide ions Tripod-like Methanol oxidation Nanostructured catalysts 


Funding information

This work was financially supported by the National Natural Science Foundation of China (21501106), the Scientific Research Foundation for the Returned Overseas Chinese Scholars and Qingdao Municipal Science and Technology Commission (16-5-1-86-jch), Chemistry Faculty Talents Foundation of Qingdao University of Science and Technology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4417_MOESM1_ESM.docx (4.4 mb)
ESM 1 (DOCX 4472 kb)


  1. Ataee-Esfahani H, Wang L, Nemoto Y, Yamauchi Y (2010) Synthesis of bimetallic Au@Pt nanoparticles with au Core and nanostructured Pt Shell toward highly active Electrocatalysts. Chem Mater 22:6310–6318.
  2. Cao YQ, Yang Y, Shan YF, Huang ZR (2016) One-pot and facile fabrication of hierarchical branched Pt-Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cells. ACS Appl Mater Inter 8:5998–6003.
  3. Chen ZW, Higgins D, Yu A, Zhang L, Zhang JJ (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192. CrossRefGoogle Scholar
  4. Chen M, Wu BH, Yang J, Zheng NF (2012) Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv Mater 24:862–879. CrossRefGoogle Scholar
  5. Ding LX, Li GR, Wang ZL, Liu ZQ, Liu H, Tong YX (2012) Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation. Chem Eur J 18:8386–8391. CrossRefGoogle Scholar
  6. Fu SF, Zhu CZ, Shi QR, Xia HB, Dua D, Lin YH (2016) Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions. Nanoscale 8:5076–5081. CrossRefGoogle Scholar
  7. Gong MX, Fu GT, Chen Y, Tang YW, Lu TH (2014) Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl Mater Interfaces 6:7301–7308. CrossRefGoogle Scholar
  8. Hong W, Wang J, Wang EK (2014) Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl Mater Interfaces 6:9481–9487. CrossRefGoogle Scholar
  9. Huang XQ, Zhu EB, Chen Y, Li YJ, Chiu CY, Xu YX, Lin ZY, Duan XF, Huang Y (2013) A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced oxygen reduction reaction catalyst. Adv Mater 25:2974–2979. CrossRefGoogle Scholar
  10. Jiang B, Li CL, Malgras V, Bando Y, Yamauchi Y (2016a) Three-dimensional hyperbranched PdCu nanostructures with high electrocatalytic activity. Chem Commun 52:1186–1189. CrossRefGoogle Scholar
  11. Jiang B, Li CL, Malgras V, Imura M, Tominaka S, Yamauchi Y (2016b) Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem Sci 7:1575–1581. CrossRefGoogle Scholar
  12. Li CL, Sato T, Yamauchi Y (2013) Electrochemical synthesis of one-dimensional mesoporous Pt nanorods using the assembly of surfactant micelles in confined space. Angew Chem 125:8208–8211. CrossRefGoogle Scholar
  13. Li CL, Imura M, Yamauchi Y (2014) Displacement plating of a mesoporous Pt skin onto Co nanochains in a low-concentration surfactant solution. Chem Eur J 20:3277–3282. CrossRefGoogle Scholar
  14. Li HH, Ma SY, Fu QQ, Liu XJ, Wu L, Yu SH (2015) Scalable bromide-triggered synthesis of Pd@Pt core-shell ultrathin nanowires with enhanced electrocatalytic performance toward oxygen reduction reaction. J Am Chem Soc 137:7862–7868. CrossRefGoogle Scholar
  15. Liu MH, Zhang J, Liu JQ, Yu WW (2011) Synthesis of PVP-stabilized Pt/Ru colloidal nanoparticles by ethanol reduction and their catalytic properties for selective hydrogenation of ortho-chloronitrobenzene. J Catal 278:1–7. CrossRefGoogle Scholar
  16. Lv HF, Peng T, Wu P, Pan M, Mu SC (2012) Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance. J Mater Chem 22:9155–9160. CrossRefGoogle Scholar
  17. Mao JJ, Chen Z, Chen YJ, Wang DS, Li YD (2016) Controllable synthesis of Pt-Cu nanocrystals and their tunable catalytic properties. CrystEngComm 18(21):3764–3767. CrossRefGoogle Scholar
  18. Nosheen F, Zhang ZC, Xiang GL, Xu B, Yang Y, Saleem F, Xu XB, Zhang JC, Wang X (2015) Three-dimensional hierarchical Pt-Cu superstructures. Nano Res 8:832–838. CrossRefGoogle Scholar
  19. Porter NS, Wu H, Quan ZW, Fang JY (2013) Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc Chem Res 46:1867–1877. CrossRefGoogle Scholar
  20. Qi Y, Bian T, Choi SI, Jiang YY, Jin CH, Fu MS, Zhang H, Yang DR (2014) Kinetically controlled synthesis of Pt-Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation. Chem Commun 50:560–562. CrossRefGoogle Scholar
  21. Saleem F, Zhang ZC, Xu B, Xu XB, He PL, Wang X (2013) Ultrathin Pt-Cu nanosheets and nanocones. J Am Chem Soc 135:18304–18307. CrossRefGoogle Scholar
  22. Shi LH, Wang AQ, Zhang T, Zhang BS, Su DS, Li HQ, Song YJ (2013) One-step synthesis of Au-Pd alloy nanodendrites and their catalytic activity. J Phys Chem C 117:12526–12536. CrossRefGoogle Scholar
  23. Sui N, Wang K, Shan XY, Bai Q, Wang LN, Xiao HL, Liu MH, Colvin V, Yu W (2017) Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency. Dalton Trans 46:15541–15548. CrossRefGoogle Scholar
  24. Tritsaris GA, Rossmeisl J (2012) Methanol oxidation on model elemental and bimetallic transition metal surfaces. J Phys Chem C 116:11980–11986. CrossRefGoogle Scholar
  25. Wang L, Yamauchi Y (2009) Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem Mater 21:3562–3569. CrossRefGoogle Scholar
  26. Wang L, Yamauchi Y (2010) Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J Am Chem Soc 132:13636–13638. CrossRefGoogle Scholar
  27. Wang L, Yamauchi Y (2011) Strategic synthesis of Trimetallic Au@Pd@Pt core shell nanoparticles from poly (vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts. Chem Mater 23:2457–2465. CrossRefGoogle Scholar
  28. Wang HJ, Jeong HY, Imura M, Wang L, Radhakrishnan L, Fujita N, Castle T, Terasaki O, Yamauchi Y (2011) Shape- and size-controlled synthesis in hard templates: sophisticated chemical reduction for mesoporous monocrystalline platinum nanoparticles. J Am Chem Soc 133:14526–14529. CrossRefGoogle Scholar
  29. Wang F, Li CH, Sun LD, Xu CH, Wang JF, Yu J, Yan CH (2012) Porous single-crystalline palladium nanoparticles with high catalytic activities. Angew Chem Int Ed 51:4872–4876. CrossRefGoogle Scholar
  30. Wu J, Yang H (2013) Platinum-based oxygen reduction electrocatalysts. Acc Chem Res 46(8):1848–1857.
  31. Xia BY, Wu HB, Wang X, Lou XW (2012) One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J Am Chem Soc 134:13934–13937. CrossRefGoogle Scholar
  32. Xu CW, Su YZ, Tan LL, Liu ZL, Zhang JH, Chen S, Jiang SP (2009) Electrodeposited PtCo and PtMn electrocatalysts for methanol and ethanol electrooxidation of direct alcohol fuel cells. Electrochim Acta 54:6322–6326. CrossRefGoogle Scholar
  33. Yu WY, Liu MH, Liu HF, Ma XM, Liu ZJ (1998) Preparation, characterization, and catalytic properties of polymer-stabilized ruthenium colloids. J Colloid Interface Sci 208:439–444. CrossRefGoogle Scholar
  34. Yu WY, Tu WX, Liu HF (1999) Synthesis of nanoscale platinum colloids by microwave dielectric heating. Langmuir 15:6–9. CrossRefGoogle Scholar
  35. Yuan Q, Zhou ZY, Zhuang J, Wang X (2010) Tunable aqueous phase synthesis and shape-dependent electrochemical properties of rhodium nanostructures. Inorg Chem 49:5515–5521. CrossRefGoogle Scholar
  36. Zhang H, Jin MS, Wang JG, Li WY, Camargo P, Kim M, Yang DR, Xie ZX, Xia YN (2011) Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J Am Chem Soc 133:6078–6089. CrossRefGoogle Scholar
  37. Zhang Y, Janyasupab M, Liu CW, Li XX, Xu JQ, Liu CC (2012) Three dimensional PtRh alloy porous nanostructures: tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells. Adv Funct Mater 22:3570–3575. CrossRefGoogle Scholar
  38. Zhang K, Bin D, Yang BB, Wang CQ, Ren FF, Du YK (2015) Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation. Nanoscale 7:12445–12451. CrossRefGoogle Scholar
  39. Zhang N, Bu LZ, Guo S, Guo SJ, Huang XQ (2016) Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett 16:5037–5043. CrossRefGoogle Scholar
  40. Zhou M, Wang H, Vara M, Hood Z, Luo M, Yang TH, Bao SX, Chi MF, Xiao P, Zhang YH, Xia YN (2016) Quantitative analysis of the reduction kinetics responsible for the one-pot synthesis of Pd-Pt bimetallic nanocrystals with different structures. J Am Chem Soc 138:12263–12270. CrossRefGoogle Scholar
  41. Zou LL, Li J, Yuan T, Zhou Y, Li X, Yang H (2014) Structural transformation of carbon-supported Pt3Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst. Nanoscale 6:10686–10692. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Ning Sui
    • 1
  • Ke Wang
    • 1
  • Qiang Bai
    • 1
  • Lina Wang
    • 2
    Email author
  • Tao Wang
    • 1
  • Hailian Xiao
    • 1
  • Manhong Liu
    • 1
  • Vicki L. Colvin
    • 3
  • Qingbo Zhang
    • 3
  • William W. Yu
    • 1
    • 4
    Email author
  1. 1.College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdaoChina
  2. 2.College of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdaoChina
  3. 3.Department of ChemistryBrown UniversityProvidenceUSA
  4. 4.Department of Chemistry and PhysicsLouisiana State University ShreveportShreveport,USA

Personalised recommendations